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Abstract

In this paper, the theory of abstract splines is applied to the variational refinement of (periodic)
curves that meet data to within convex set&th The analysis is relevant to each level of refinement
(the limitcurves are not considered here). The curves are characterized by an application of a separation
theorem for multiple convex sets, and represented as the solution of an equation involving the dual of
certain maps on an inner product space. Namely,

T*Tf + A wI(Af)=0.

Existence and uniqueness are established under certain conditions. The problem here is a generaliza-
tion of that studied in (Kersey, Near-interpolatory subdivided curves, author’s home page, 2003) to
include arbitrary quadratic minimizing functionals, placed in the setting of abstract spline theory. The
theory is specialized to the discretized thin beam and interval tension problems.
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1. Introduction

The variational theory of polynomial splines began in the late 1950s with the problem
of best interpolatiof13]. Extensions to this problem were developed in the 1960s and
1970s; most notably, the problems of smoothing splines, least-squares splines and the
spline. Another problem studied in this time period was the computation of best spline fits
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constrained to interpolate withintervals /; < f (t;) <u;, as studiedif2,3,6,22,23]. During

about the same time frame, an abstract theory of splines was being developed, perhaps first
by Atteia (sed4]), followed up by others if1,15], and using a different approach[b]

(based on earlier papers). The interval-constrained splines were generalized to curves in the
problem of best near-interpolation (4&6,17]), with constraints given by “balls” ig¢, and

this was extended to arbitrary convex setdid, 18], while also being studied independently
in[24,25]. Along differentlines, the problem of variational spline interpolation was extended

to subdivided curves if21], and generalized to near-interpolatory refinement to convex sets

in [19] using a discretization of the linearized thin beam functional.

Itis the goal here to develop an abstract theory of variational refinement to convex sets by
combining the abstract spline theory with near-interpolatory refinement techniques. In this
paper, we will be viewing the curves at each level of refinement as piecewise linear splines
with fixed knots (the free-knot problem is studied to some extefitdiR0]). To simplify the
presentation slightly, we will be assuming that the curves are closed periodic. To characterize
the minimizers at each level of refinement, we apply an elegant separation theorem for
multiple convex sets that was developed 8] and generalized ifil2] (see[11] for an
exposition of7,8], or see [14,26]). Following this, existence and uniqueness is established,
and the theory is then applied to the discretized thin beam and interval weighted splines. We
do not consider the limits of the refinement scheme here, which, in particular, would depend
on parametrization, and is best left for future work. As a final introductory comment, the
original title of this paper wa&n abstract formulation of constrained subdivision. However,
as one of the reviewers pointed out, this paper is perhaps more about an abstract formulation
of constrained “minimization” (applied to (near-)interpolatory “refinement”) than what is
generally studied in subdivision theory. The current title reflects this point of view.

2. Constrained refinement

Let X be the linear space of all closed-periodic piecewise linesslihe) curves (t) =

"+1 pi Ni1(t) withfixed knotso, . . ., fa42,% < f;11,and coefficient; = (p1, ..., p)
in R?. In particular,p; = f(#;). Leth; := t;+1 — t;. Sincef is closed,p,+1 = p1; since it
is periodic,h,+1 = h1 andhg = h,. Let/; : X — R? be the “vector-valued functionals”
(linear maps) defined by the actidnf := f(t;) = p;, and letAd f := (4; f : i=1:n). Let

n n
Ti(f) =) aijijf =) aijpj € R*

j=1 j=1

for some coefficients;; € R. Typically, the sequences . have small support for each
i; as, for example, whefT; is the second divided difference operafgr 1, 7;, t;+1], as
considered later in this paper. Since the knots may be non-uniform, the sequenaes
typically different (not simply a shift of one another) for eachnd the refinement schemes
non-uniform. LefT be the map

T:X—->Y:f+— (T;(f):i=1n)
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with ¥ := R"*?. We define the energy in the curve as

E(f):=(T£.Tf)y =Y _IT(HI? =D T(f) Ti(f)

i=1 i=1

with “.” denoting the usuatiot productin R?. In particular,E( f) is quadratic and positive
semi-definite, and can be written

E(f)=p"Hp= A" H(AS) ()

with H a symmetric positive semi-definite matrix determined by the coefficignts
Since each curvg e X is identified uniquely by its coefficient sequend¢ < Y, the
usual inner product il induces an inner product of1 i.e.,

(f, @)x = (Af, AQ)y =Y 4 f - Jig.

We split the inner product by the sum

(fs8)x = (Sf, Sg)ker1 + (T f. T &)y, 2

with S : X — ker T defined by orthogonal projection with respectio) x, and(-, -)kerT
an inner product on kef'. On passing to the adjoint mdp* : Y* — X* of T, we have

E(f/)=(T £.T fly =(T"T f. f)x.

Note thatinthe lastinner product we have associated the funcigial with its represen-
terinX, by the Riesz Representation theorem. We will make similar associations throughout
this paper, i.e., we will interchange spaces and maps with duals and representers as needed.
For example, we associaXewith X* andY with Y*, and sor'* : Y — X, as used above.

Let {I1, I2, I3} be a partition of 1:n. For each indéxe I, we associate a poigt to
be interpolated, i.ep; = A; f = g;; for each index € I, we associate a convex skt
to be near-interpolated, i.ep; € K;; the remaining indices € I3 correspond to points
p; that are free to vary. One can assume that the interpolated points (indié¢gsare
fixed from previous levels of refinement, the near-interpolated poipfsa(é constrained
by the set;, and the remaining pointsg)/are the new points added at the next level of
refinement. As we assumed at the beginning of this section, the krdtsur spline curves
f are prescribed, and so we only need to choose the coeffigients

The constraint set&; are defined as

m
Ki = m Ki; with Kij={x¢€ R? . 8ij(x) <0}
j=1

for some functiong;; : RY — R, and somen. We assume that the functiopg are smooth,
with non-vanishing gradier¥ g;; on 0K;, the boundary oK;. We assume, moreover, that
the setk; are convex with non-empty interidf;. Note that we include the possibility that
Kij = R? for someij by allowingg;; = 0 on R?. In this way, each sek; is defined only
by the non-trivial functiong;;; at mostm for eachi.
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In correspondence to the index sets defined above, let
micY - Ry (xriely), j=1,23.
Letqg = (g; : i € I) andK := x;¢, K;. Our goal is to solve the minimization problem:

minimize{E(f) : mip = q, m2p € K}.
P

Or,withQ :={f € X :mAf =gq, moAf € K},

mi?iengzize E(f). 3)

3. Additional notation

Throughout this paper we will be using various sequences. To unify the presentation, the
following indexing and notation will be followed:

X € Rd, xk e R for k=1,

Bey =R BecR fori=ln, j=1:m,

o e Rrxdxm ocf?j € R fori=1l:n, j=L1:m, k=1,
S R#;zoxm, Wi j ZO

It follows, for example, thap; € R?, f¢ € R" anda;; € R?. A similar convention will
be used for other variables; e.g.,= (pf.‘ . i=1:n, k=1:d), as before. To characterize
solutions to (3), certain maps and their duals will be defined. Since our functionals (maps)
/; are “vector-valued”, the notation is perhaps non-standard. In particular, vector-vector
multiplication is defined pointwise. Let:

M f e 25(f) = pk.  (thek-th coordinate of; f)
hi X —RYfes L f =G LA D,
A (RYY — X x> x (xl/l xdi?),

A X —Y:fr—— (af,.... %[,
A Y XF B Y Bidi = Y (BEE L B,

A c X — Rfexdxm e Qi Aif i€ D),
——— —
" m times
2T . uxdxm * d d
A R —X ou—>216122/ 1 0j A= Zlelzzl 1(%, l,..., UJ,)

I Y s Ry s (Vgin(i), ..., Veim(i) © i € I).

4. Characterization

In this section, solutions to (3) are characterized in Theo?effo do so, we apply a
separation theorem by Dubovitskii and Milyutin for convex cones, generalized to arbitrary
convex sets by Halkin, stated next.
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Theorem 1(see Dubovitskii and Milyutirj8, Theorem 2.1], and HalkifL2, Lemma 4.2]).
LetCo, ..., C; be convex sets in a normed linear space X Witbpen fori > 0and0 € C;
(the closure ofC;) for all i. ThenN;C; = @ iff (C; : i=0:l) is separated a0 in the sense
that there exists a sequence of function@lg . . ., i) in X*, not all zerowith )", 1; =0
andinf x;C; >0, all i.

Theorem 2. f € Q solved(3) iff

TTf + 3> wiihi(Veij (i f)) =0 @

icl j=1
for some nonnegative multipliets;; with w;; = 0 wheng;;(4; /) < 0. Equivalently,
T*Tf + A wI(Af) = 0. (5)

Moreover,there are only global minimizei$.e.,local minimizers are global minimizers).

Proof. To preserve the interpolation conditianA f = ¢, (linear) variations f + v of
f must satisfyr1A(f + v) = mAf, and son1Av = 0. This is easily accomplished by
restrictingv to X := X N ker n14. And so, we will be applying Theorerhon X rather
thanX, with the same inner product, but under the relative topology.

Let Co be the set

={veX: (T f, Tv)y <0}
={veX:(T*T f,v)x <0}

of directionsv along whichE is strictly decreasing, and I€};; be the sets
Cij ={veX:Vg(if) 4v <O0if g;j(Zi(f) =0}
={veX: (4 Vgi(kif), vix <0if gL (f) =0}

of feasible directions strictly into the set§, for i € I, j=1:m. Sincef is a (local)
minimizer exactly wherk(-) is not decreasing along feasible directions into (including the
boundary of)Q, it is a minimizer iff

CoN mf;/’ = .
ij
Moreover, for the setup her€p N ﬂ Cij =90 = ConNn ﬂi; EU = ¢, for if
v E Comﬂ C,, + {0, thenv+e(w—v) € Coﬁﬂ C,j foranyw e ﬂ C,, ande > 0
small enough implying’o N (;; Cij # 9. Thereforef is a (local) m|n|m|zer iff
Coﬂmcijzﬂ. (6)
ij
The set"g andC;; are (relatively) open it and contain 0 in their closure. Indeed¢as 0
inRy, —¢f € Coand—cv € C;; foranyv e X such thatjv = Vgij(4; f). Therefore, by
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(6) and Theorert (with the sets”;; in place ofC; fori > 0),fis a (local) minimizer iff there
e>_<ist_|inear functional%’to andy;; on X, not all zero, suchthaty + >, Z’}’zl 1ij =0,
with inf 11oCo >0 and mfuijcij >0. Moreover, since one can always choossuch that
Aiv is directed into the convex open skt from /J; f, and since/ is an onto map, it
follows thatﬂij Cij # 9. As a consequence, it follows by Theordnapplied to the sets
Cij (not includingCo), that} " i;; # 0. Therefore, in the context above, # 0 when

Mo+ ij ;= 0.
SincepnCo >0, it follows that

Ho = —wo(T*Tf. -)x

for somewo >0, and sincey;; Cij >0,
tij = —wij (A (Vgij (i f))s )x

for somew;; >0 wheng;; (4; f) = 0. On the other hand};; = X wheng;;(4; ) <0, in
which casgy;; = 0 andw;; = 0.
Thereforef is a local minimizer ok from Q iff

—wo(T*Tf, hx + Y Y —wij {4 (Vgij(2i f)). )x =0
icly j=1

on X for somewg >0 andw;; >0, with w;; = 0 wheng;;(/4; f) < 0. Moreover, since
Ug # 0, it follows thatwg > 0. Without loss of generality, we may assume that= 1,
and so

m
(T*Tf + Y wijdi (Vgij(2if)). )x =0
iel j=1
implying, moreover, that the representer of this functional vanishes. That is,
m
T*Tf+ > > wijl (Vgi(i f)) =0.
iel j=1
Equivalently,
T*Tf + A wIl(Af) = 0.

Finally, local minimizers are global minimizers, since, by the convexit@,of +s (F=1
isinQforalls € [0, 1]]when f is in Q, and, by the convexity dE,

E(NH<SE(f+5(f— <SE)+s(Ef) - Ef))

for all s small enough (say € [0, ¢] for some smalk > 0) whenf is a local minimizer,
thereby implying thaE (/) < E(f) forall f € Q. O
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5. Existence and uniqueness

Definition 3. We say thak is coercive orX if E(f) — oo as|| fllx — oo.

Definition 4. We say that f;) is a minimizing sequence for (3) iff £ Q2 for eachl and
lim E(f) =inf{E(f): f € Q).

Theorem 5. Assumeas abovethat K is closednonempty and conveand thatQ # .
Then,solutions to(3) exist when eithef2N ker T # @, or whenQNker T = Jand E is
coercive on X.

Proof. Existence is trivial to establish in the case tban ker T # @ sinceE(f) = 0
forany f € QN ker T. And so, we will henceforth assume tHain ker 7 = @. Let (f7)

be a minimizing sequence f&in Q. By the coercivity assumptiorf;) is bounded with
respect td| - |x. SinceX is a finite dimensional space, all norms on it are equivalent. In
particular, recalling thap; := A; f are the spline coefficients férthe Euclidean norm of

p = Af in R"*? is a norm forf in X. Therefore, sincéf;) is bounded irX, it follows
that (A f;) is bounded ifR"*?, and so(A f;) has convergent subsequences. On passing to
a subsequence, we may assume thit— p € R"*“. SinceK is closed andi A f; € K

for eachl, it follows thatnop € K; sincenyAf; = g for all |, m1p = ¢. Thisp is the
coefficient sequence for sonfee Q. Sincef; is a minimizing sequence fd(-), it follows
thatE(f) < E(f;) foralll. Hence f solves (3). O

This existence result will be applied to the setup given in the next section. In particular,
coercivity is established for a specific objective functiofal) of practical interest. Our
next goal is to establish uniqueness under certain conditions. For this we need the following
result:

Lemma 6. Suppose thaf; and f> both solvg3). Then,f1 — f> € ker T.

Proof. Sincej; and f> both minimizeE(-) = ||T - ||§ overQ, it follows thatT f1 andT f>

are minimal norm elements ifiQ2 C Y. Moreover, as the image of a convex set under a
linear map,T Q is convex inY, and so there can be only one minimal norm elemefiin
ThereforeT f1 = T fo, and sofy — fo e ker7. O

The following condition is used to establish uniqueness. The terminology is borrowed
from [9], but in a different context.

Definition 7. We say thatthe setup is well-posed if krl) "ker T = {0} whenevels € Y
is chosen such thatg >, ), %) e (ker T)™ for k=1:d.

Uniqueness is established in the next theorem. For this, we requikeQ = ¢ with

TF: X — R": f —> (Tf)X, (thek-th coordinate ofl'f)
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k=1:d. Note that this condition is more restrictive than Ken Q = @. In the following
proof, we make the association rih = (ker T)*. This follows because the subspace
ranT is closed inY (see[10, Theorem 4.13.6]).

Theorem 8. Suppose thater TX N Q = ¢ for k=1:d, that the set; are strictly convex,
and that the setup is well-posed. Thérere is at most one solution {8).

Proof. Suppose that; and f> both solve (3), each necessarily achieving the minimum
valuee := inf{E(f) = ||Tf||§ . f € Q) of EoverQ. Let f := (f1+ f2)/2. Due to the
convexity of 2, f € Q. Moreoverf is also a solution to (3) with value, as follows from
the inequality

Ve<VE() = HTM

1
> <§(||Tf1||y+I|Tf2||y)=«/E-

Sincef is a solution to (3), it follows by (5) that
T*Tf = —A"wI(Af)

for some nonnegative multipliets;;. Let

pi=—AwlAf) =" Bk

iel

with

Bi =~ Z w;;jVgii(Zif)

j=1

and lety* : v — (uv)*, thek-th coordinate-map ofi, for k=1:d. SinceT*Tf = p, it
follows thaty is in ranT* = (ker T)*, and sou* € (ker T)" as well. MoreoveryX # 0,
for otherwiseT* f = 0, violating the assumption kef* N Q = @. (To see this, note that
pk = 0implies

0= (5, fix = (T*THE, frx = (TTRS, frx = (T5F TFf)x)
Since

0# =D piifeker)t, k=ld

iel

and the system is well-posed, it follows that et ) Nker T = {0}. By Lemmab, f1— f2 €
ker T, and so, to prove uniqueness, it remains to show fhat f> € ker(fA).

Given a solutions to (3), let A, denote the set of indicdg restricted toi € I, such
that theij-th constraint is active, meaning that;(4;0) = 0 andw;; > 0 (i.e., when
w;; # 0). Now, let f:= (f1 + f2)/2, as above, with multipliers;;. By convexity of
the setsK;, theij-th constraint is active fof iff it is active for both f1 and f2, and so
Ar C Ay N Ay, Moreover, by strict convexity of the sek§, 4; f = 4; f1 = 4; f> when
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ij € Ay. Equivalently,i; (f1 — f2) = 0 whenw;; # 0. Thereforew;;/; (f1 — f2) = 0 for
allij. By the definition of3; given above, it follows that

Bidi(fr— f2) == Vgij(i fHwijdi(fr— f2) =0
j=1
for all'i, and sof; — f2 € ker(fA).
To conclude, we have shown that — f> € ker(fA) Nker T = {0}, and sof1 = f.
Therefore, there can be at most one solutionl

To see what can go wrong when we do not have the well-posed assumption, consider the
following example:

Example 9. Let X be the set of closed-periodic piecewise linear spline curves with knots
n = 1,1 = 2 andrz = 3 and coefficientp1, p2 and p3. Let K; be the closed balls

K1 = B:(1,0), K» = B;(0,1) andK3 = B.(—1, 0) for some “small” radiug. DefineT;

by their actionT1 f = f(t1) + f(3) = p1+ p3, T» = 0 and73 = 0.

Proposition 10. The setup in Exampkis not well-posed. Moreovesplutions ta(3) exist,
but are not unique.

Proof. Solutions exist sinc&'(f) = 0 for p; = (1,0) and p3 = (—1, 0), however, they
are not unique sincg@2 can be any point irk,. To see that the setup is not well-posed,
let f; = (1,1), B, = (0,0) and 3 = (1, 1) in Definition 7. Then, sincef € ker T iff

p1 = —ps3, it follows that

wf = P1p1+ Pap2+ B3ps=p1+p3=0

and sou € (ker T)*. Moreover,uf # 0fork = 1,2 sinceﬁ’{ # 0. We have established
that 0#£ % e (ker T)+, while ker(fA) Nker T # {0} because; is arbitrary. Therefore,
the setup is not well-posed.[]

In the next section, TheoreBis applied to setup wherE(-) the discretized thin beam
functional, which is well-posed. Hence, we can verify uniqueness when th&K sete
strictly convex. We also show that, although strict convexity is needed in certain cases, it is
not a necessary condition in Theor&mn

6. The discretized thin beam

In [19], the following discretization of the linearized thin beam energy functional

3 ,tl"“ |D?f(1)|? dr was studied:

n liti41

1 2 .
EN) =5 |, 124iafPd = ; dic12f P hic12. (7)

i=1 2
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Here,4,_12 = [t;_1, t;, t;+1] iS the second divided difference operator. In the context of
this paperT; := ,/hi_1.24;_12. In this section, we establish conditions for the existence
and uniqueness of solutions to (3) wiili-) asin (7). We also comment on the representation
of linear functionals in our reproducing Hilbert space.

We may first observe that it (f) = 0 for this functional, then all second divided
differences vanish. Therefore, k&ris contained in the space of linear curves. But the only
linear curves that are also closed are “constant curves”. That i< ke&mnsists of curves
f with coefficientsp = Af on the diagonalx, x,...,x) in ¥ = R"*¢, In particular,
dim(ker T) =d.

Theorem 11. Let E(-) be as in(7). Solutions td3) exist for the energy functionél) when
eitherQnNker T # @, orwhenQ Nker T = @ and at least one of the sek§ is bounded.
Solutions are unique when the séfsare strictly convex an@ N ker 7% = ¢ for k=1:d.

Proof. Existence follows directly from Theore®mwhenQ Nker T # ¢, and can be
established whef® N ker T = ¢ if we can satisfy the coercivity condition in Definitich
To this end, recall the inner product

(f.8)x = (Sf. Sg)kerTt + (T f. T g)y

givenin (2), with{-, -)xer T SOme inner product on kef . As stated above, kef is comprised
of the constant functions when(-) is given by (7). In particular, we can choose

(Sf.Sg)kerT:=Aif - Aig

for anyi. Here, we choosé to correspond to a bounded s&t, as hypothesized in the
theorem. By (2) and (1),

112 = (Sf, Sf)kerT + (T £, T f)y
=pi-pi+p'Hp

is a norm (-squared) oX, with p = A f. Now, sincek; is bounded (for this particulay,
thenp; is bounded, and sB(f) = p” Hp and|| | x go to infinity together. In particular,
E(f) — oowhen|f|lx — oo. This establishes coercivity, and existence wiiem
kerT =¢.

It remains to establish uniqueness. By TheoBnrve need to show that the setup is well-
posed. To do so, suppose thétf = 0 for k=1:d with u = 3", ; 4; for some coefficients
f;in R?. Since we are also assuming thét= 0, it follows thatﬁf is nonzero for somg
for eachk (actually, there are at least two nonzgé’ffofor eachk in the setup here). Then, if
f € ker 4, it follows thatpl’.‘ = 0O for at least ong and eactk. But if fis in ker T, then
it is a constant curve, and g4 = p4 = --- = 0. Thereforep = 0inY, and sof = 0.
This establishes the well-posedness condition in DefinifidBy Theoren8, solutions are
unique. [

To see thatboundedness (or perhaps some other condition) is needed to establish existence
in Theoreml1, consider the following example:
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Example 12. Let K := K1 x K2 x K3 with

Ki:={(x,y) eR%:xy>1, x,y>0},
Ko = RZ,
K3 = {(_X,y) S Rz:xy>l» X,y <O}

Let X be the set of closed-periodic piecewise linear spline curves with knetsl, r, = 2
andrz = 3, and coefficients1, p» and p3 in R?.

Proposition 13. For the setup in Exampl&2, solutions to(3) do not exist.

Proof. In Examplel2, each sek; is closed and convex iR?. Moreover,Q Nker T = ¢
since kerT contains only constant curves an&k; = . Therefore,E(f) > O for any
f € Q. However, infE(-) = 0 overQ. To see this, let f*) be a sequence of spline curves

with coefficientsp’ = (%, k), ps = (O, k + */Té) andp} = (—#, k). Each of the curveg*
is an equilateral triangle if. Ask — oo these triangles shrink to a point and are pushed
up to oo in they coordinate. MoreovetZ () = %?, and SoE(f¥) — 0 ask — oo. In

particular,( f*) is a minimizing sequence. But singg-) = 0is not achieved i, solutions
do not exist. [

One important special case is when the $&tare Euclidean balls iiR?. In this case the
setskK; are strictly convex, and so we have uniqueness by The8téfa see what can go
wrong when the set&; are not strictly convex, consider the following example:

Example 14. Let K := K1 x K2 x K3 with

K1:= {(x,y) € R?:x>¢, y>1}),
Ko := {(x,y) € R2:x§ —&, y=1},
K3 = {(X,y)€R2y<o}

Here, ¢ is some small positive number (as small as we need it to be). Let the knots be
uniform.

Proposition 15. For the setup in Exampl&4, solutions to(3) are not unique.

Proof. Suppose thdtsolve (3) for this configuration, with coefficientg, p> andps. Then,

eitherpy # (g, -) or po # (—¢, -), for otherwiseE (f) would be large due to a very small

angle atps. But this means thdtcan be shifted either to the left or right without violating

the constraintsf (1;) € K;, and without increasing the energy. That is, the cufvwith

coefficientsp := p + (9, 0) is also a solution for som& and so, solutions are not unique.
O

Unfortunately, we are often interested in configurations wherekthare not strictly
convex, and it seems tricky to have a blanket uniqueness condition in this case. However,



S. N. Kersey / Journal of Approximation Theory 130 (2004) 148-161 159

Fig. 1. Discretized thin beam (left); interval tension (right).

once we have computed a solution for a given configuration, we can often verify uniqueness
by inspection. For example, consider the left image in Eig-ere, we have computed a
minimizerf for (3) for the minimizing functionakE (-) given in (7). (The curve in the image

was actually generated after a couple levels of refinement.) We know by Thaoharrthis

is necessarily a global minimizer. Moreover, we know by Lenthiaat if there is another
solution, f, thenf — f € ker T. That s f differs from f by a constant function. However,

by inspection of the curve in the figurfagannot be shifted by a constant (a linear translation)
without violating the constraints. Therefore, the curve computed must be the unique global
minimizer to (3) (to within computational tolerances).

We conclude this section with another feature of reproducing kernel Hilbert spaces.
Namely, that the representets = ¢, (¢) of linear functionals!; on X are themselves ele-
ments ofX. For the setup here, the representers of the (vector-) functigrels necessarily
piecewise linear, periodic splines with knatsThey act by the inner product as follows:

Aif = (fodidx = f@0) - (1) + (ANHTH Ad;.
Moreover, as shown if19],
E(f)=Y_pi-imp,(D>f) = (Af)" jmp,(D3f)
i=1
with jmp, (D3 f) := (jmp, (D3 f) : i=1:n) for the “jump maps”

hi—13 hi—23
3 4 . )

h; i l,3f hi 1

Therefore, the representers take on the action

dif ={f di)x = f(t) - ¢;(t)) + (AT jmp,(D3¢,).

Now, f = Z, p;jN;(t) in our piecewise linear spline basis, and in this basi¥; =
(Nj, oj)x = (3;-j, with §;; the Kroenecker-delta function. Therefore, we can determine the
representers; (1) by solving linear systems whose rows are determined from

Nj(t2) - ¢ (1) +imp, (D3¢;) = 3

for j=1:n, to determine the coefficients in the expansio; (r) := > ;_; ax N (¢). The
linear system is almost banded, with bandwidth 5 on the banded part, just as in periodic
cubic spline interpolation.

jmp,, (D f) := Ai_23 f.
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These representers can be used in computation. Assuming that we are given the multipliers
w;;, we have, by (5), the following:

T*Tf = —A wl(Af)
== Dicn, 2 =1 Wij4 (Vgij(2i )
==Dieh (Z'}Ll wijvgij(iif))ti),-(').

From this, we can recovér

7. Interval tension

It is relatively straight forward to experiment with different refinement functionals. For
example, to achieve interval tension, we can modify the discretized thin beam functional as
follows:

n fitliyl

L1 ? . -
ﬂﬂ:zznwiﬂmhmﬁngﬂmﬂm%uz (8)

i=1Y 2
Here,f; are interval tension parameters, assumed to be positive. The curves in Fig. 1 were
computed after a couple levels of refinement, using the energy functional (7) for the left
image, and (8) for the right. The effect of interval tension is quite apparent in the right
image.

8. Conclusion

Inthis paper, we present an abstract approach to variational refinement for curves that meet
arbitrary convex constraints. We investigate the characterization, existence and uniqueness
of solutions in a general, abstract framework. But the analysis is based only on one level
of refinement. In particular, the smoothness of the limiting curves is not considered. This
is an interesting and open problem, complicated by the non-uniformity of the knots. That
is, the smoothness depends on the parametrization of the curves. The author is currently
investigating this problem whe#(-) is the energy functional in Section 6. Another useful
generalization may be to allow “functionals; other than point evaluation, as is typically
the case in generalized spline theory.
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