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Abstract

In this paper, the theory of abstract splines is applied to the variational refinement of (periodic)
curves that meet data to within convex sets inRd . The analysis is relevant to each level of refinement
(the limit curvesarenot consideredhere).Thecurvesarecharacterizedbyanapplicationof a separation
theorem for multiple convex sets, and represented as the solution of an equation involving the dual of
certain maps on an inner product space. Namely,

T ∗Tf + �̃
∗
w�(�f )= 0.

Existence and uniqueness are established under certain conditions. The problem here is a generaliza-
tion of that studied in (Kersey, Near-interpolatory subdivided curves, author’s home page, 2003) to
include arbitrary quadratic minimizing functionals, placed in the setting of abstract spline theory. The
theory is specialized to the discretized thin beam and interval tension problems.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The variational theory of polynomial splines began in the late 1950s with the problem
of best interpolation[13]. Extensions to this problem were developed in the 1960s and
1970s; most notably, the problems of smoothing splines, least-squares splines and the�-
spline. Another problem studied in this time period was the computation of best spline fits
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constrained to interpolatewithinintervals,li �f (ti)�ui , as studied in[2,3,6,22,23].During
about the same time frame, an abstract theory of splines was being developed, perhaps first
by Atteia (see[4]), followed up by others in[1,15], and using a different approach in[5]
(based on earlier papers). The interval-constrained splines were generalized to curves in the
problemof best near-interpolation (see[16,17]), with constraints given by “balls” inRd , and
this was extended to arbitrary convex sets in[16,18], while also being studied independently
in [24,25].Alongdifferent lines, theproblemof variational spline interpolationwasextended
to subdivided curves in[21], and generalized to near-interpolatory refinement to convex sets
in [19] using a discretization of the linearized thin beam functional.
It is the goal here to develop an abstract theory of variational refinement to convex sets by

combining the abstract spline theory with near-interpolatory refinement techniques. In this
paper, we will be viewing the curves at each level of refinement as piecewise linear splines
with fixed knots (the free-knot problem is studied to some extent in[19,20]). To simplify the
presentation slightly,wewill beassuming that the curvesare closedperiodic.To characterize
the minimizers at each level of refinement, we apply an elegant separation theorem for
multiple convex sets that was developed in[7,8] and generalized in[12] (see[11] for an
exposition of[7,8], or see [14,26]). Following this, existence and uniqueness is established,
and the theory is then applied to the discretized thin beam and interval weighted splines.We
do not consider the limits of the refinement scheme here, which, in particular, would depend
on parametrization, and is best left for future work. As a final introductory comment, the
original title of this paper wasAn abstract formulation of constrained subdivision. However,
as one of the reviewers pointed out, this paper is perhapsmore about an abstract formulation
of constrained “minimization” (applied to (near-)interpolatory “refinement”) than what is
generally studied in subdivision theory. The current title reflects this point of view.

2. Constrained refinement

LetXbe the linear space of all closed-periodic piecewise linear (B-spline) curvesf (t) =∑n+1
i=1 pi Ni,1(t)with fixedknotst0, . . . , tn+2, ti < ti+1, andcoefficientspi = (p1

i , . . . , p
d
i )

in Rd . In particular,pi = f (ti). Let hi := ti+1 − ti . Sincef is closed,pn+1 = p1; since it
is periodic,hn+1 = h1 andh0 = hn. Let �i : X → Rd be the “vector-valued functionals”
(linear maps) defined by the action�if := f (ti) = pi , and let�f := (�if : i=1:n). Let

Ti(f ) :=
n∑

j=1
aij�j f =

n∑
j=1

aijpj ∈ Rd

for some coefficientsaij ∈ R. Typically, the sequencesai,: have small support for each
i; as, for example, whenTi is the second divided difference operator[ti−1, ti , ti+1], as
considered later in this paper. Since the knots may be non-uniform, the sequencesai,: are
typically different (not simply a shift of one another) for eachi, and the refinement schemes
non-uniform. LetT be the map

T : X→ Y : f �−→ (Ti(f ) : i=1:n)
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with Y := Rn×d . We define the energy in the curve as

E(f ) := 〈Tf, Tf 〉Y :=
n∑

i=1
|Ti(f )|2 :=

n∑
i=1

Ti(f ) · Ti(f )

with “·” denoting the usualdot productin Rd . In particular,E(f ) is quadratic and positive
semi-definite, and can be written

E(f ) = pT Hp = (�f )T H(�f ) (1)

with H a symmetric positive semi-definite matrix determined by the coefficientsaij .
Since each curvef ∈ X is identified uniquely by its coefficient sequence�f ∈ Y , the

usual inner product inY induces an inner product onX; i.e.,

〈f, g〉X := 〈�f,�g〉Y =
∑
i

�if · �ig.

We split the inner product by the sum

〈f, g〉X := 〈Sf, Sg〉Ker T + 〈T f, T g〉Y , (2)

with S : X→ ker T defined by orthogonal projection with respect to〈·, ·〉X, and〈·, ·〉Ker T
an inner product on kerT . On passing to the adjoint mapT ∗ : Y ∗ → X∗ of T, we have

E(f ) = 〈T f, T f 〉Y = 〈T ∗T f, f 〉X.
Note that in the last inner productwehaveassociated the functionalT ∗T f with its represen-
ter inX, by theRieszRepresentation theorem.Wewill make similar associations throughout
this paper, i.e., we will interchange spaces and maps with duals and representers as needed.
For example, we associateXwith X∗ andYwith Y ∗, and soT ∗ : Y → X, as used above.

Let {I1, I2, I3} be a partition of 1:n. For each indexi ∈ I1, we associate a pointqi to
be interpolated, i.e.,pi = �if = qi ; for each indexi ∈ I2 we associate a convex setKi

to be near-interpolated, i.e.,pi ∈ Ki ; the remaining indicesi ∈ I3 correspond to points
pi that are free to vary. One can assume that the interpolated points (indices inI1) are
fixed from previous levels of refinement, the near-interpolated points (I2) are constrained
by the setsKi , and the remaining points (I3) are the new points added at the next level of
refinement. As we assumed at the beginning of this section, the knotsti of our spline curves
f are prescribed, and so we only need to choose the coefficientspi .
The constraint setsKi are defined as

Ki :=
m⋂

j=1
Kij with Kij := {x ∈ Rd : gij (x)�0}

for some functionsgij : Rd → R, and somem.Weassume that the functionsgij are smooth,
with non-vanishing gradient∇gij on�Ki , the boundary ofKi . We assume, moreover, that
the setsKi are convex with non-empty interiorKo

i . Note that we include the possibility that
Kij = Rd for someij by allowinggij ≡ 0 onRd . In this way, each setKi is defined only
by the non-trivial functionsgij ; at mostm for eachi.
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In correspondence to the index sets defined above, let

�j : Y → R#Ij×d : x → (xi : i ∈ Ij ), j = 1,2, 3.

Let q = (qi : i ∈ I1) andK := ×i∈I2Ki . Our goal is to solve the minimization problem:

minimize
p

{E(f ) : �1p = q, �2p ∈ K}.

Or, with� := {f ∈ X : �1�f = q, �2�f ∈ K},
minimize

f∈�
E(f ). (3)

3. Additional notation

Throughout this paper we will be using various sequences. To unify the presentation, the
following indexing and notation will be followed:

x ∈ Rd , xk ∈ R for k=1:d,
� ∈ Y = Rn×d , �k

i ∈ R for i=1:n, j=1:m,

� ∈ Rn×d×m, �kij ∈ R for i=1:n, j=1:m, k=1:d,
w ∈ R

#I2×m
�0 , wij �0.

It follows, for example, that�i ∈ Rd , �k ∈ Rn and�ij ∈ Rd . A similar convention will
be used for other variables; e.g.,p = (pk

i : i=1:n, k=1:d), as before. To characterize
solutions to (3), certain maps and their duals will be defined. Since our functionals (maps)
�i are “vector-valued”, the notation is perhaps non-standard. In particular, vector-vector
multiplication is defined pointwise. Let:

�ki : f �−→ �ki (f ) = pk
i , (thek-th coordinate of�if )

�i : X −→ Rd : f �−→ �if = (�1i f, . . . , �
d
i f ),

�∗i : (Rd)∗ −→ X∗ : x �−→ x�i = (x1�1i , . . . , x
d�di ),

� : X −→ Y : f �−→ (�1f, . . . , �nf ),
�∗ : Y ∗ −→ X∗ : � �−→∑n

i=1 �i�i =
∑n

i=1(�
1
i �

1
i , . . . ,�

d
i �

d
i ),

�̃ : X −→ R#I2×d×m : f �−→ (�if, . . . , �if︸ ︷︷ ︸
m times

: i ∈ I2),

�̃
∗ : Rn×d×m−→X∗ : � �−→∑

i∈I2
∑m

j=1 �ij�i=∑
i∈I2

∑m
j=1(�1ij�

1
i , . . . , �

d
ij�

d
i ),

� : Y �−→ R#I2×d×m : y �−→ (∇gi1(yi), . . . ,∇gi,m(yi) : i ∈ I2).

4. Characterization

In this section, solutions to (3) are characterized in Theorem2. To do so, we apply a
separation theorem by Dubovitskii and Milyutin for convex cones, generalized to arbitrary
convex sets by Halkin, stated next.
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Theorem 1(see Dubovitskii and Milyutin[8, Theorem 2.1], and Halkin[12, Lemma 4.2]).
LetC0, . . . , Cl be convex sets in a normed linear space XwithCi open fori > 0and0 ∈ Ci

(the closure ofCi) for all i. Then∩iCi = ∅ iff (Ci : i=0:l) is separated at0 in the sense
that there exists a sequence of functionals(	0, . . . ,	l ) in X∗, not all zero,with

∑
i 	i = 0

and inf 	iCi �0,all i.

Theorem 2. f ∈ � solves(3) iff

T ∗Tf +
∑
i∈I2

m∑
j=1

wij�
∗
i (∇gij (�if )) = 0 (4)

for some nonnegative multiplierswij withwij = 0whengij (�if ) < 0.Equivalently,

T ∗Tf + �̃
∗
w�(�f ) = 0. (5)

Moreover,there are only global minimizers(i.e., local minimizers are global minimizers).

Proof. To preserve the interpolation condition�1�f = q, (linear)variationsf + v of
f must satisfy�1�(f + v) = �1�f , and so�1�v = 0. This is easily accomplished by
restrictingv to X̃ := X ∩ ker �1�. And so, we will be applying Theorem1 on X̃ rather
thanX, with the same inner product, but under the relative topology.
LetC0 be the set

C0 := {v ∈ X̃ : 〈T f, T v〉Y < 0}
= {v ∈ X̃ : 〈T ∗T f, v〉X < 0}

of directionsv along whichE is strictly decreasing, and letCij be the sets

Cij := {v ∈ X̃ : ∇gij (�if ) · �iv < 0 if gij (�i (f )) = 0}
= {v ∈ X̃ : 〈�∗i (∇gij (�if )), v〉X < 0 if gij (�i (f )) = 0}

of feasible directions strictly into the setsKi , for i ∈ I2, j=1:m. Sincef is a (local)
minimizer exactly whenE(·) is not decreasing along feasible directions into (including the
boundary of)�, it is a minimizer iff

C0 ∩
⋂
ij

Cij = ∅.

Moreover, for the setup hereC0 ∩ ⋂
ij Cij = ∅ �⇒ C0 ∩ ⋂

ij Cij = ∅, for if
v ∈ C0 ∩⋂

ij Cij �= ∅, thenv + ε(w− v) ∈ C0 ∩⋂
ij Cij for anyw ∈⋂

ij Cij andε > 0
small enough, implyingC0 ∩⋂

ij Cij �= ∅. Therefore,f is a (local) minimizer iff

C0 ∩
⋂
ij

Cij = ∅. (6)

The setsC0 andCij are (relatively) open iñX and contain 0 in their closure. Indeed, asc ↓ 0
in R+,−cf ∈ C0 and−cv ∈ Cij for anyv ∈ X̃ such that�iv = ∇gij (�if ). Therefore, by
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(6) andTheorem1(with the setsCij in place ofCi for i > 0), f is a (local)minimizer iff there
exist linear functionals	0 and	ij on X̃, not all zero, such that	0+

∑
i∈I2

∑m
j=1 	ij = 0,

with inf 	0C0�0 and inf	ijCij �0. Moreover, since one can always choosev such that
�iv is directed into the convex open setKi from �if , and since� is an onto map, it
follows that

⋂
ij Cij �= ∅. As a consequence, it follows by Theorem1 applied to the sets

Cij (not includingC0), that
∑

	ij �= 0. Therefore, in the context above,	0 �= 0 when
	0 +

∑
ij 	ij = 0.

Since	0C0�0, it follows that

	0 = −w0〈T ∗Tf, ·〉X
for somew0�0, and since	ijCij �0,

	ij = −wij 〈�∗i (∇gij (�if )), ·〉X
for somewij �0 whengij (�if ) = 0. On the other hand,Cij = X̃ whengij (�if ) < 0, in
which case	ij = 0 andwij = 0.
Therefore,f is a local minimizer ofE from� iff

−w0〈T ∗Tf, ·〉X +
∑
i∈I2

m∑
j=1
−wij 〈�∗i (∇gij (�if )), ·〉X = 0

on X for somew0�0 andwij �0, with wij = 0 whengij (�if ) < 0. Moreover, since
	0 �= 0, it follows thatw0 > 0. Without loss of generality, we may assume thatw0 = 1,
and so

〈T ∗Tf +
∑
i∈I2

m∑
j=1

wij�
∗
i (∇gij (�if )), ·〉X = 0

implying, moreover, that the representer of this functional vanishes. That is,

T ∗Tf +
∑
i∈I2

m∑
j=1

wij�
∗
i (∇gij (�if )) = 0.

Equivalently,

T ∗Tf + �̃
∗
w�(�f ) = 0.

Finally, local minimizers are global minimizers, since, by the convexity of�, f +s (f̂ −f )

is in� for all s ∈ [0, 1]whenf̂ is in�, and, by the convexity ofE,

E(f )�E(f + s (f̂ − f ))�E(f )+ s (E(f̂ )− E(f ))

for all s small enough (says ∈ [0, 
] for some small
 > 0) whenf is a local minimizer,
thereby implying thatE(f )�E(f̂ ) for all f̂ ∈ �. �
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5. Existence and uniqueness

Definition 3. We say thatE is coercive onX if E(f )→∞ as‖f ‖X →∞.

Definition 4. We say that(fl) is a minimizing sequence for (3) if fl ∈ � for eachl and

lim E(fl) = inf {E(f ) : f ∈ �}.

Theorem 5. Assume,as above,that K is closed,nonempty and convex,and that� �= ∅.
Then,solutions to(3) exist when either� ∩ ker T �= ∅, or when� ∩ ker T = ∅ and E is
coercive on X.

Proof. Existence is trivial to establish in the case that� ∩ ker T �= ∅ sinceE(f ) = 0
for anyf ∈ � ∩ ker T . And so, we will henceforth assume that� ∩ ker T = ∅. Let (fl)
be a minimizing sequence forE in �. By the coercivity assumption,(fl) is bounded with
respect to‖ · ‖X. SinceX is a finite dimensional space, all norms on it are equivalent. In
particular, recalling thatpi := �if are the spline coefficients forf, the Euclidean norm of
p = �f in Rn×d is a norm forf in X. Therefore, since(fl) is bounded inX, it follows
that(�fl) is bounded inRn×d , and so(�fl) has convergent subsequences. On passing to
a subsequence, we may assume that�fl → p ∈ Rn×d . SinceK is closed and�2�fl ∈ K

for eachl, it follows that �2p ∈ K; since�1�fl = q for all l, �1p = q. This p is the
coefficient sequence for somef ∈ �. Sincefl is a minimizing sequence forE(·), it follows
thatE(f )�E(fl) for all l. Hence,f solves (3). �

This existence result will be applied to the setup given in the next section. In particular,
coercivity is established for a specific objective functionalE(·) of practical interest. Our
next goal is to establish uniqueness under certain conditions. For this we need the following
result:

Lemma 6. Suppose thatf1 andf2 both solve(3).Then,f1− f2 ∈ ker T .

Proof. Sincef1 andf2 both minimizeE(·) = ‖T · ‖2Y over�, it follows thatTf1 andTf2
are minimal norm elements inT� ⊂ Y . Moreover, as the image of a convex set under a
linear map,T� is convex inY, and so there can be only one minimal norm element inT�.
ThereforeTf1 = Tf2, and sof1− f2 ∈ ker T . �

The following condition is used to establish uniqueness. The terminology is borrowed
from [9], but in a different context.

Definition 7. Wesay that the setup iswell-posed if ker(��)∩ker T = {0}whenever� ∈ Y

is chosen such that 0�=∑
i∈I2 �k

i �
k
i ∈ (ker T )⊥ for k=1:d.

Uniqueness is established in the next theorem. For this, we require kerT k ∩� = ∅ with

T k : X −→ Rn : f �−→ (Tf )k, (thek-th coordinate ofTf )
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k=1:d. Note that this condition is more restrictive than kerT ∩ � = ∅. In the following
proof, we make the association ranT ∗ = (ker T )⊥. This follows because the subspace
ranT is closed inY (see[10, Theorem 4.13.6]).

Theorem 8. Suppose thatker T k ∩� = ∅ for k=1:d, that the setsKi are strictly convex,
and that the setup is well-posed. Then,there is at most one solution to(3).

Proof. Suppose thatf1 andf2 both solve (3), each necessarily achieving the minimum
valuee := inf {E(f ) = ‖Tf ‖2Y : f ∈ �} of E over�. Let f := (f1 + f2)/2. Due to the
convexity of�, f ∈ �. Moreover,f is also a solution to (3) with valuee, as follows from
the inequality

√
e�

√
E(f ) =

∥∥∥∥T (f1+ f2)

2

∥∥∥∥ � 1

2
(‖Tf1‖Y + ‖Tf2‖Y ) =

√
e.

Sincef is a solution to (3), it follows by (5) that

T ∗Tf = −�̃
∗
w�(�f )

for some nonnegative multiplierswij . Let

	 := −�̃
∗
w�(�f ) =

∑
i∈I2

�i�i

with

�i := −
m∑

j=1
wij∇gij (�if )

and let	k : v �→ (	v)k, thek-th coordinate-map of	, for k=1:d. SinceT ∗Tf = 	, it
follows that	 is in ranT ∗ = (ker T )⊥, and so	k ∈ (ker T )⊥ as well. Moreover,	k �= 0,
for otherwiseT kf = 0, violating the assumption kerT k ∩ � = ∅. (To see this, note that
	k = 0 implies

0= 〈	k, f 〉X = 〈(T ∗Tf )k, f 〉X = 〈(T k)∗T kf, f 〉X = 〈T kf, T kf 〉X.)
Since

0 �= 	k =
∑
i∈I2

�k
i �

k
i ∈ (ker T )⊥, k=1:d

and the system iswell-posed, it follows that ker(��)∩ker T = {0}. By Lemma6,f1−f2 ∈
ker T , and so, to prove uniqueness, it remains to show thatf1− f2 ∈ ker(��).

Given a solution� to (3), letA� denote the set of indicesij, restricted toi ∈ I2, such
that theij-th constraint is active, meaning thatgij (�i�) = 0 andwij > 0 (i.e., when
wij �= 0). Now, let f := (f1 + f2)/2, as above, with multiplierswij . By convexity of
the setsKi , the ij-th constraint is active forf iff it is active for bothf1 andf2, and so
Af ⊂ Af1 ∩ Af2. Moreover, by strict convexity of the setsKi , �if = �if1 = �if2 when
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ij ∈ Af . Equivalently,�i (f1− f2) = 0 whenwij �= 0. Therefore,wij�i (f1− f2) = 0 for
all ij. By the definition of�i given above, it follows that

�i�i (f1− f2) = −
m∑

j=1
∇gij (�if )wij�i (f1− f2) = 0

for all i, and sof1− f2 ∈ ker(��).
To conclude, we have shown thatf1 − f2 ∈ ker(��) ∩ ker T = {0}, and sof1 = f2.

Therefore, there can be at most one solution.�

To see what can go wrong when we do not have the well-posed assumption, consider the
following example:

Example 9. Let X be the set of closed-periodic piecewise linear spline curves with knots
t1 = 1, t2 = 2 andt3 = 3 and coefficientsp1, p2 andp3. Let Ki be the closed balls
K1 = B
(1,0), K2 = B
(0, 1) andK3 = B
(−1,0) for some “small” radius
. DefineTi
by their action:T1f = f (t1)+ f (t3) = p1+ p3, T2 ≡ 0 andT3 ≡ 0.

Proposition 10. The setup in Example9 is not well-posed. Moreover,solutions to(3)exist,
but are not unique.

Proof. Solutions exist sinceE(f ) = 0 for p1 = (1,0) andp3 = (−1,0), however, they
are not unique sincep2 can be any point inK2. To see that the setup is not well-posed,
let �1 = (1,1), �2 = (0, 0) and�3 = (1,1) in Definition 7. Then, sincef ∈ ker T iff
p1 = −p3, it follows that

	f = �1p1+ �2p2+ �3p3 = p1+ p3 = 0

and so	 ∈ (ker T )⊥. Moreover,	k �= 0 for k = 1,2 since�k
1 �= 0. We have established

that 0 �= 	k ∈ (ker T )⊥, while ker(��) ∩ ker T �= {0} becausep2 is arbitrary. Therefore,
the setup is not well-posed.�

In the next section, Theorem8 is applied to setup whereE(·) the discretized thin beam
functional, which is well-posed. Hence, we can verify uniqueness when the setsKi are
strictly convex. We also show that, although strict convexity is needed in certain cases, it is
not a necessary condition in Theorem8.

6. The discretized thin beam

In [19], the following discretization of the linearized thin beam energy functional
1
2

∫ tn+1
t1

|D2f (t)|2 dt was studied:

E(f ) := 1

2

n∑
i=1

∫ ti+ti+1
2

ti+ti−1
2

|2�i−1,2f |2 dt =
n∑

i=1
|�i−1,2f |2 hi−1,2. (7)
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Here,�i−1,2 := [ti−1, ti , ti+1] is the second divided difference operator. In the context of
this paperTi :=

√
hi−1,2�i−1,2. In this section, we establish conditions for the existence

anduniqueness of solutions to (3)withE(·)as in (7).Wealso comment on the representation
of linear functionals in our reproducing Hilbert space.
We may first observe that ifE(f ) = 0 for this functional, then all second divided

differences vanish. Therefore, kerT is contained in the space of linear curves. But the only
linear curves that are also closed are “constant curves”. That is, kerT consists of curves
f with coefficientsp = �f on the diagonal(x, x, . . . , x) in Y = Rn×d . In particular,
dim(ker T ) = d.

Theorem 11. LetE(·) be as in(7).Solutions to(3)exist for the energy functional(7)when
either� ∩ ker T �= ∅, or when� ∩ ker T = ∅ and at least one of the setsKi is bounded.
Solutions are unique when the setsKi are strictly convex and� ∩ ker T k = ∅ for k=1:d.

Proof. Existence follows directly from Theorem5 when� ∩ ker T �= ∅, and can be
established when� ∩ ker T = ∅ if we can satisfy the coercivity condition in Definition3.
To this end, recall the inner product

〈f, g〉X = 〈Sf, Sg〉Ker T + 〈T f, T g〉Y
given in (2),with〈·, ·〉Ker T some inner product onkerT .As statedabove, kerT is comprised
of the constant functions whenE(·) is given by (7). In particular, we can choose

〈Sf, Sg〉Ker T := �if · �ig
for any i. Here, we choosei to correspond to a bounded setKi , as hypothesized in the
theorem. By (2) and (1),

‖f ‖2X = 〈Sf, Sf 〉Ker T + 〈T f, T f 〉Y
= pi · pi + pT Hp

is a norm (-squared) onX, withp = �f . Now, sinceKi is bounded (for this particulari),
thenpi is bounded, and soE(f ) = pT Hp and‖f ‖X go to infinity together. In particular,
E(f ) → ∞ when‖f ‖X → ∞. This establishes coercivity, and existence when� ∩
ker T = ∅.
It remains to establish uniqueness. By Theorem8, we need to show that the setup is well-

posed. To do so, suppose that	kf = 0 for k=1:d with 	 =∑
i �i�i for some coefficients

�i in Rd . Since we are also assuming that	k �= 0, it follows that�k
i is nonzero for somei,

for eachk (actually, there are at least two nonzero�k
i for eachk in the setup here). Then, if

f ∈ ker ��, it follows thatpk
i = 0 for at least onei, and eachk. But if f is in ker T , then

it is a constant curve, and sopk
1 = pk

2 = · · · = 0. Therefore,p = 0 inY, and sof ≡ 0.
This establishes the well-posedness condition in Definition7. By Theorem8, solutions are
unique. �

Tosee that boundedness (or perhaps someother condition) is needed toestablishexistence
in Theorem11, consider the following example:
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Example 12. LetK := K1×K2×K3 with

K1 := {(x, y) ∈ R2 : x y�1, x, y > 0},
K2 := R2,

K3 := {(x, y) ∈ R2 : x y�1, x, y < 0}.
LetX be the set of closed-periodic piecewise linear spline curves with knotst1 = 1, t2 = 2
andt3 = 3, and coefficientsp1, p2 andp3 in R2.

Proposition 13. For the setup in Example12,solutions to(3) do not exist.

Proof. In Example12, each setKi is closed and convex inR2. Moreover,� ∩ ker T = ∅
since kerT contains only constant curves and∩Ki = ∅. Therefore,E(f ) > 0 for any
f ∈ �. However, infE(·) = 0 over�. To see this, let(f k) be a sequence of spline curves

with coefficientspk
1 =

(1
k
, k

)
,pk

2 =
(
0, k +

√
3
k

)
andpk

3 =
(−1

k
, k

)
. Each of the curvesf k

is an equilateral triangle in�. As k →∞ these triangles shrink to a point and are pushed
up to∞ in they coordinate. Moreover,E(f k) = 18

k2
, and soE(f k) → 0 ask → ∞. In

particular,(f k) is aminimizing sequence. But sinceE(·) = 0 is not achieved in�, solutions
do not exist. �

One important special case is when the setsKi are Euclidean balls inRd . In this case the
setsKi are strictly convex, and so we have uniqueness by Theorem8. To see what can go
wrong when the setsKi are not strictly convex, consider the following example:

Example 14. LetK := K1×K2×K3 with

K1 := {(x, y) ∈ R2 : x�
, y�1},
K2 := {(x, y) ∈ R2 : x� − 
, y�1},
K3 := {(x, y) ∈ R2 : y�0}.

Here,
 is some small positive number (as small as we need it to be). Let the knots be
uniform.

Proposition 15. For the setup in Example14,solutions to(3) are not unique.

Proof. Suppose thatf solve (3) for this configuration, with coefficientsp1,p2 andp3. Then,
eitherp1 �= (
, ·) or p2 �= (−
, ·), for otherwiseE(f ) would be large due to a very small
angle atp3. But this means thatf can be shifted either to the left or right without violating
the constraintsf (ti) ∈ Ki , and without increasing the energy. That is, the curvef̃ with
coefficientsp̃ := p + (, 0) is also a solution for some, and so, solutions are not unique.

�

Unfortunately, we are often interested in configurations where theKi are not strictly
convex, and it seems tricky to have a blanket uniqueness condition in this case. However,
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Fig. 1. Discretized thin beam (left); interval tension (right).

once we have computed a solution for a given configuration, we can often verify uniqueness
by inspection. For example, consider the left image in Fig.1. Here, we have computed a
minimizerf for (3) for the minimizing functionalE(·) given in (7). (The curve in the image
was actually generated after a couple levels of refinement.)We know by Theorem2 that this
is necessarily a global minimizer. Moreover, we know by Lemma6 that if there is another
solution,f̃ , thenf − f̃ ∈ ker T . That is,f differs fromf̃ by a constant function. However,
by inspection of the curve in the figure,f cannot be shifted by a constant (a linear translation)
without violating the constraints. Therefore, the curve computed must be the unique global
minimizer to (3) (to within computational tolerances).
We conclude this section with another feature of reproducing kernel Hilbert spaces.

Namely, that the representers�∗i = �i (t) of linear functionals�i onX are themselves ele-
ments ofX. For the setup here, the representers of the (vector-) functionals�i are necessarily
piecewise linear, periodic splines with knotsti . They act by the inner product as follows:

�if = 〈f,�i〉X = f (t1) · �i (t1)+ (�f )T H ��i .

Moreover, as shown in[19],

E(f ) =
n∑

i=1
pi · jmpti (D

3f ) = (�f )T jmpt (D
3f )

with jmpt (D
3f ) := (jmpti (D

3f ) : i=1:n) for the “jump maps”

jmpti (D
3 f ) := hi−1,3

hi
�i−1,3f − hi−2,3

hi−1
�i−2,3 f.

Therefore, the representers take on the action

�if = 〈f,�i〉X = f (t1) · �i (t1)+ (�f )T jmpt (D
3�i ).

Now, f = ∑
j pjNj (t) in our piecewise linear spline basis, and in this basis�iNj =

〈Nj ,�i〉X = ij , with ij the Kroenecker-delta function. Therefore, we can determine the
representers�i (t) by solving linear systems whose rows are determined from

Nj(t1) · �i (t1)+ jmptj (D
3�i ) = ij

for j=1:n, to determine the coefficients�k in the expansion�i (t) :=
∑n

k=1 �kNk(t). The
linear system is almost banded, with bandwidth 5 on the banded part, just as in periodic
cubic spline interpolation.
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These representers canbeused in computation.Assuming thatwearegiven themultipliers
wij , we have, by (5), the following:

T ∗Tf = −�̃
∗
w�(�f )

= −∑
i∈I2

∑m
j=1wij�

∗
i (∇gij (�if ))

= −∑
i∈I2

( ∑m
j=1wij∇gij (�if )

)
�i (·).

From this, we can recoverf.

7. Interval tension

It is relatively straight forward to experiment with different refinement functionals. For
example, to achieve interval tension, we can modify the discretized thin beam functional as
follows:

E(f ) := 1

2

n∑
i=1

∫ ti+ti+1
2

ti+ti−1
2

�i |2�i−1,2f |2 dt =
n∑

i=1
�i |�i−1,2f |2 hi−1,2. (8)

Here,�i are interval tension parameters, assumed to be positive. The curves in Fig. 1 were
computed after a couple levels of refinement, using the energy functional (7) for the left
image, and (8) for the right. The effect of interval tension is quite apparent in the right
image.

8. Conclusion

In thispaper,wepresentanabstract approach tovariational refinement for curves thatmeet
arbitrary convex constraints. We investigate the characterization, existence and uniqueness
of solutions in a general, abstract framework. But the analysis is based only on one level
of refinement. In particular, the smoothness of the limiting curves is not considered. This
is an interesting and open problem, complicated by the non-uniformity of the knots. That
is, the smoothness depends on the parametrization of the curves. The author is currently
investigating this problem whenE(·) is the energy functional in Section 6. Another useful
generalization may be to allow “functionals”�i other than point evaluation, as is typically
the case in generalized spline theory.
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