Journal OF Approximation Theory

An abstract formulation of variational refinement

Scott N. Kersey
Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460-8093, USA

Received 23 July 2003; accepted in revised form 27 July 2004
Communicated by Ulrich Reif
Available online 11 September 2004

Abstract

In this paper, the theory of abstract splines is applied to the variational refinement of (periodic) curves that meet data to within convex sets in \mathbb{R}^{d}. The analysis is relevant to each level of refinement (the limit curves are not considered here). The curves are characterized by an application of a separation theorem for multiple convex sets, and represented as the solution of an equation involving the dual of certain maps on an inner product space. Namely, $$
T^{*} T f+\tilde{\Lambda}^{*} w \Gamma(\Lambda f)=0
$$

Existence and uniqueness are established under certain conditions. The problem here is a generalization of that studied in (Kersey, Near-interpolatory subdivided curves, author's home page, 2003) to include arbitrary quadratic minimizing functionals, placed in the setting of abstract spline theory. The theory is specialized to the discretized thin beam and interval tension problems. © 2004 Elsevier Inc. All rights reserved.

MSC: 41A05; 41A15; 41A29

Keywords: Variational refinement; Subdivision; Abstract splines

1. Introduction

The variational theory of polynomial splines began in the late 1950s with the problem of best interpolation [13]. Extensions to this problem were developed in the 1960s and 1970s; most notably, the problems of smoothing splines, least-squares splines and the v spline. Another problem studied in this time period was the computation of best spline fits

[^0]constrained to interpolate within intervals, $l_{i} \leqslant f\left(t_{i}\right) \leqslant u_{i}$, as studied in [2,3,6,22,23]. During about the same time frame, an abstract theory of splines was being developed, perhaps first by Atteia (see [4]), followed up by others in [1,15], and using a different approach in [5] (based on earlier papers). The interval-constrained splines were generalized to curves in the problem of best near-interpolation (see [16,17]), with constraints given by "balls" in \mathbb{R}^{d}, and this was extended to arbitrary convex sets in $[16,18]$, while also being studied independently in [24,25]. Along different lines, the problem of variational spline interpolation was extended to subdivided curves in [21], and generalized to near-interpolatory refinement to convex sets in [19] using a discretization of the linearized thin beam functional.

It is the goal here to develop an abstract theory of variational refinement to convex sets by combining the abstract spline theory with near-interpolatory refinement techniques. In this paper, we will be viewing the curves at each level of refinement as piecewise linear splines with fixed knots (the free-knot problem is studied to some extent in [19,20]). To simplify the presentation slightly, we will be assuming that the curves are closed periodic. To characterize the minimizers at each level of refinement, we apply an elegant separation theorem for multiple convex sets that was developed in [7,8] and generalized in [12] (see [11] for an exposition of $[7,8]$, or see $[14,26]$). Following this, existence and uniqueness is established, and the theory is then applied to the discretized thin beam and interval weighted splines. We do not consider the limits of the refinement scheme here, which, in particular, would depend on parametrization, and is best left for future work. As a final introductory comment, the original title of this paper was An abstract formulation of constrained subdivision. However, as one of the reviewers pointed out, this paper is perhaps more about an abstract formulation of constrained "minimization" (applied to (near-)interpolatory "refinement") than what is generally studied in subdivision theory. The current title reflects this point of view.

2. Constrained refinement

Let X be the linear space of all closed-periodic piecewise linear (B-spline) curves $f(t)=$ $\sum_{i=1}^{n+1} p_{i} N_{i, 1}(t)$ with fixed knots $t_{0}, \ldots, t_{n+2}, t_{i}<t_{i+1}$, and coefficients $p_{i}=\left(p_{i}^{1}, \ldots, p_{i}^{d}\right)$ in \mathbb{R}^{d}. In particular, $p_{i}=f\left(t_{i}\right)$. Let $h_{i}:=t_{i+1}-t_{i}$. Since f is closed, $p_{n+1}=p_{1}$; since it is periodic, $h_{n+1}=h_{1}$ and $h_{0}=h_{n}$. Let $\lambda_{i}: X \rightarrow \mathbb{R}^{d}$ be the "vector-valued functionals" (linear maps) defined by the action $\lambda_{i} f:=f\left(t_{i}\right)=p_{i}$, and let $\Lambda f:=\left(\lambda_{i} f: i=1: n\right)$. Let

$$
T_{i}(f):=\sum_{j=1}^{n} a_{i j} \lambda_{j} f=\sum_{j=1}^{n} a_{i j} p_{j} \in \mathbb{R}^{d}
$$

for some coefficients $a_{i j} \in \mathbb{R}$. Typically, the sequences $a_{i, \text { : }}$ have small support for each i; as, for example, when T_{i} is the second divided difference operator [t_{i-1}, t_{i}, t_{i+1}], as considered later in this paper. Since the knots may be non-uniform, the sequences $a_{i, \text { : }}$ are typically different (not simply a shift of one another) for each i, and the refinement schemes non-uniform. Let T be the map

$$
T: X \rightarrow Y: f \longmapsto\left(T_{i}(f): i=1: n\right)
$$

with $Y:=\mathbb{R}^{n \times d}$. We define the energy in the curve as

$$
E(f):=\langle T f, T f\rangle_{Y}:=\sum_{i=1}^{n}\left|T_{i}(f)\right|^{2}:=\sum_{i=1}^{n} T_{i}(f) \cdot T_{i}(f)
$$

with "." denoting the usual dot product in \mathbb{R}^{d}. In particular, $E(f)$ is quadratic and positive semi-definite, and can be written

$$
\begin{equation*}
E(f)=p^{T} H p=(\Lambda f)^{T} H(\Lambda f) \tag{1}
\end{equation*}
$$

with H a symmetric positive semi-definite matrix determined by the coefficients $a_{i j}$.
Since each curve $f \in X$ is identified uniquely by its coefficient sequence $\Lambda f \in Y$, the usual inner product in Y induces an inner product on X; i.e.,

$$
\langle f, g\rangle_{X}:=\langle\Lambda f, \Lambda g\rangle_{Y}=\sum_{i} \lambda_{i} f \cdot \lambda_{i} g
$$

We split the inner product by the sum

$$
\begin{equation*}
\langle f, g\rangle_{X}:=\langle S f, S g\rangle_{\mathrm{Ker} T}+\langle T f, T g\rangle_{Y} \tag{2}
\end{equation*}
$$

with $S: X \rightarrow$ ker T defined by orthogonal projection with respect to $\langle\cdot, \cdot\rangle_{X}$, and $\langle\cdot, \cdot\rangle_{\mathrm{Ker}} \mathrm{T}$ an inner product on ker T. On passing to the adjoint map $T^{*}: Y^{*} \rightarrow X^{*}$ of T, we have

$$
E(f)=\langle T f, T f\rangle_{Y}=\left\langle T^{*} T f, f\right\rangle_{X}
$$

Note that in the last inner product we have associated the functional $T^{*} T f$ with its representer in X, by the Riesz Representation theorem. We will make similar associations throughout this paper, i.e., we will interchange spaces and maps with duals and representers as needed. For example, we associate X with X^{*} and Y with Y^{*}, and so $T^{*}: Y \rightarrow X$, as used above.

Let $\left\{I_{1}, I_{2}, I_{3}\right\}$ be a partition of 1:n. For each index $i \in I_{1}$, we associate a point q_{i} to be interpolated, i.e., $p_{i}=\lambda_{i} f=q_{i}$; for each index $i \in I_{2}$ we associate a convex set K_{i} to be near-interpolated, i.e., $p_{i} \in K_{i}$; the remaining indices $i \in I_{3}$ correspond to points p_{i} that are free to vary. One can assume that the interpolated points (indices in I_{1}) are fixed from previous levels of refinement, the near-interpolated points $\left(I_{2}\right)$ are constrained by the sets K_{i}, and the remaining points $\left(I_{3}\right)$ are the new points added at the next level of refinement. As we assumed at the beginning of this section, the knots t_{i} of our spline curves f are prescribed, and so we only need to choose the coefficients p_{i}.

The constraint sets K_{i} are defined as

$$
K_{i}:=\bigcap_{j=1}^{m} K_{i j} \quad \text { with } \quad K_{i j}:=\left\{x \in \mathbb{R}^{d}: g_{i j}(x) \leqslant 0\right\}
$$

for some functions $g_{i j}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and some m. We assume that the functions $g_{i j}$ are smooth, with non-vanishing gradient $\nabla g_{i j}$ on ∂K_{i}, the boundary of K_{i}. We assume, moreover, that the sets K_{i} are convex with non-empty interior K_{i}^{o}. Note that we include the possibility that $K_{i j}=\mathbb{R}^{d}$ for some $i j$ by allowing $g_{i j} \equiv 0$ on \mathbb{R}^{d}. In this way, each set K_{i} is defined only by the non-trivial functions $g_{i j}$; at most m for each i.

In correspondence to the index sets defined above, let

$$
\pi_{j}: Y \rightarrow \mathbb{R}^{\# I_{j} \times d}: x \rightarrow\left(x_{i}: i \in I_{j}\right), \quad j=1,2,3 .
$$

Let $q=\left(q_{i}: i \in I_{1}\right)$ and $K:=\times_{i \in I_{2}} K_{i}$. Our goal is to solve the minimization problem:

$$
\underset{p}{\operatorname{minimize}}\left\{E(f): \pi_{1} p=q, \pi_{2} p \in K\right\} .
$$

Or, with $\Omega:=\left\{f \in X: \pi_{1} \Lambda f=q, \pi_{2} \Lambda f \in K\right\}$,

$$
\begin{equation*}
\underset{f \in \Omega}{\operatorname{minimize}} E(f) \tag{3}
\end{equation*}
$$

3. Additional notation

Throughout this paper we will be using various sequences. To unify the presentation, the following indexing and notation will be followed:

$$
\begin{array}{ll}
x \in \mathbb{R}^{d}, & x^{k} \in \mathbb{R} \text { for } k=1: d, \\
\beta \in Y=\mathbb{R}^{n \times d}, & \beta_{i}^{k} \in \mathbb{R} \text { for } i=1: n, j=1: m, \\
\alpha \in \mathbb{R}^{n \times d \times m}, & \alpha_{i j}^{k} \in \mathbb{R} \text { for } i=1: n, j=1: m, k=1: d, \\
w \in \mathbb{R}_{\geqslant 0}^{\# I_{2} \times m}, & w_{i j} \geqslant 0 .
\end{array}
$$

It follows, for example, that $\beta_{i} \in \mathbb{R}^{d}, \beta^{k} \in \mathbb{R}^{n}$ and $\alpha_{i j} \in \mathbb{R}^{d}$. A similar convention will be used for other variables; e.g., $p=\left(p_{i}^{k}: i=1: n, k=1: d\right)$, as before. To characterize solutions to (3), certain maps and their duals will be defined. Since our functionals (maps) λ_{i} are "vector-valued", the notation is perhaps non-standard. In particular, vector-vector multiplication is defined pointwise. Let:

$$
\begin{aligned}
& \lambda_{i}^{k}: f \longmapsto \lambda_{i}^{k}(f)=p_{i}^{k}, \quad \text { (the } k \text {-th coordinate of } \lambda_{i} f \text {) } \\
& \lambda_{i}: X \longrightarrow \mathbb{R}^{d}: f \longmapsto \lambda_{i} f=\left(\lambda_{i}^{1} f, \ldots, \lambda_{i}^{d} f\right) \text {, } \\
& \lambda_{i}^{*}:\left(\mathbb{R}^{d}\right)^{*} \longrightarrow X^{*}: x \longmapsto x \lambda_{i}=\left(x^{1} \lambda_{i}^{1}, \ldots, x^{d} \lambda_{i}^{d}\right) \text {, } \\
& \Lambda: X \longrightarrow Y: f \longmapsto\left(\lambda_{1} f, \ldots, \lambda_{n} f\right), \\
& \Lambda^{*}: Y^{*} \longrightarrow X^{*}: \beta \longmapsto \sum_{i=1}^{n} \beta_{i} \lambda_{i}=\sum_{i=1}^{n}\left(\beta_{i}^{1} \lambda_{i}^{1}, \ldots, \beta_{i}^{d} \lambda_{i}^{d}\right), \\
& \tilde{\Lambda}: X \longrightarrow \mathbb{R}^{\# I_{2} \times d \times m}: f \longmapsto(\underbrace{\lambda_{i} f, \ldots, \lambda_{i} f}_{m \text { times }}: i \in I_{2}), \\
& \tilde{\Lambda}^{*}: \mathbb{R}^{n \times d \times m} \longrightarrow X^{*}: \alpha \longmapsto \sum_{i \in I_{2}} \sum_{j=1}^{m} \alpha_{i j} \lambda_{i}=\sum_{i \in I_{2}} \sum_{j=1}^{m}\left(\alpha_{i j}^{1} \lambda_{i}^{1}, \ldots, \alpha_{i j}^{d} \lambda_{i}^{d}\right) \text {, } \\
& \Gamma: Y \longmapsto \mathbb{R}^{\# I_{2} \times d \times m}: y \longmapsto\left(\nabla g_{i 1}\left(y_{i}\right), \ldots, \nabla g_{i, m}\left(y_{i}\right): i \in I_{2}\right) .
\end{aligned}
$$

4. Characterization

In this section, solutions to (3) are characterized in Theorem 2. To do so, we apply a separation theorem by Dubovitskii and Milyutin for convex cones, generalized to arbitrary convex sets by Halkin, stated next.

Theorem 1 (see Dubovitskii and Milyutin [8, Theorem 2.1], and Halkin [12, Lemma 4.2]). Let C_{0}, \ldots, C_{l} be convex sets in a normed linear space X with C_{i} open for $i>0$ and $0 \in \overline{C_{i}}$ (the closure of C_{i}) for all i. Then $\cap_{i} C_{i}=\emptyset$ iff $\left(C_{i}: i=0: l\right)$ is separated at 0 in the sense that there exists a sequence of functionals $\left(\mu_{0}, \ldots, \mu_{l}\right)$ in X^{*}, not all zero, with $\sum_{i} \mu_{i}=0$ and $\inf \mu_{i} C_{i} \geqslant 0$, all i.

Theorem 2. $f \in \Omega$ solves (3) iff

$$
\begin{equation*}
T^{*} T f+\sum_{i \in I_{2}} \sum_{j=1}^{m} w_{i j} \lambda_{i}^{*}\left(\nabla g_{i j}\left(\lambda_{i} f\right)\right)=0 \tag{4}
\end{equation*}
$$

for some nonnegative multipliers $w_{i j}$ with $w_{i j}=0$ when $g_{i j}\left(\lambda_{i} f\right)<0$. Equivalently,

$$
\begin{equation*}
T^{*} T f+\tilde{\Lambda}^{*} w \Gamma(\Lambda f)=0 \tag{5}
\end{equation*}
$$

Moreover, there are only global minimizers (i.e., local minimizers are global minimizers).

Proof. To preserve the interpolation condition $\pi_{1} \Lambda f=q$, (linear) variations $f+v$ of f must satisfy $\pi_{1} \Lambda(f+v)=\pi_{1} \Lambda f$, and so $\pi_{1} \Lambda v=0$. This is easily accomplished by restricting v to $\tilde{X}:=X \cap \operatorname{ker} \pi_{1} \Lambda$. And so, we will be applying Theorem 1 on \tilde{X} rather than X, with the same inner product, but under the relative topology.

Let C_{0} be the set

$$
\begin{aligned}
C_{0} & :=\left\{v \in \tilde{X}:\langle T f, T v\rangle_{Y}<0\right\} \\
& =\left\{v \in \tilde{X}:\left\langle T^{*} T f, v\right\rangle_{X}<0\right\}
\end{aligned}
$$

of directions v along which E is strictly decreasing, and let $C_{i j}$ be the sets

$$
\begin{aligned}
C_{i j} & :=\left\{v \in \tilde{X}: \nabla g_{i j}\left(\lambda_{i} f\right) \cdot \lambda_{i} v<0 \text { if } g_{i j}\left(\lambda_{i}(f)\right)=0\right\} \\
& =\left\{v \in \tilde{X}:\left\langle\lambda_{i}^{*}\left(\nabla g_{i j}\left(\lambda_{i} f\right)\right), v\right\rangle_{X}<0 \text { if } g_{i j}\left(\lambda_{i}(f)\right)=0\right\}
\end{aligned}
$$

of feasible directions strictly into the sets K_{i}, for $i \in I_{2}, j=1: m$. Since f is a (local) minimizer exactly when $E(\cdot)$ is not decreasing along feasible directions into (including the boundary of) Ω, it is a minimizer iff

$$
C_{0} \cap \bigcap_{i j} \bar{C}_{i j}=\emptyset
$$

Moreover, for the setup here $C_{0} \cap \bigcap_{i j} C_{i j}=\emptyset \quad \Longrightarrow \quad C_{0} \cap \bigcap_{i j} \bar{C}_{i j}=\emptyset$, for if $v \in C_{0} \cap \bigcap_{i j} \bar{C}_{i j} \neq \emptyset$, then $v+\varepsilon(w-v) \in C_{0} \cap \bigcap_{i j} C_{i j}$ for any $w \in \bigcap_{i j} C_{i j}$ and $\varepsilon>0$ small enough, implying $C_{0} \cap \bigcap_{i j} C_{i j} \neq \emptyset$. Therefore, f is a (local) minimizer iff

$$
\begin{equation*}
C_{0} \cap \bigcap_{i j} C_{i j}=\emptyset . \tag{6}
\end{equation*}
$$

The sets C_{0} and $C_{i j}$ are (relatively) open in \tilde{X} and contain 0 in their closure. Indeed, as $c \downarrow 0$ in $\mathbb{R}_{+},-c f \in C_{0}$ and $-c v \in C_{i j}$ for any $v \in \tilde{X}$ such that $\lambda_{i} v=\nabla g_{i j}\left(\lambda_{i} f\right)$. Therefore, by
(6) and Theorem 1 (with the sets $C_{i j}$ in place of C_{i} for $i>0$), f is a (local) minimizer iff there exist linear functionals μ_{0} and $\mu_{i j}$ on \tilde{X}, not all zero, such that $\mu_{0}+\sum_{i \in I_{2}} \sum_{j=1}^{m} \mu_{i j}=0$, with $\inf \mu_{0} C_{0} \geqslant 0$ and $\inf \mu_{i j} C_{i j} \geqslant 0$. Moreover, since one can always choose v such that $\lambda_{i} v$ is directed into the convex open set K_{i} from $\lambda_{i} f$, and since Λ is an onto map, it follows that $\bigcap_{i j} C_{i j} \neq \emptyset$. As a consequence, it follows by Theorem 1 applied to the sets $C_{i j}$ (not including C_{0}), that $\sum \mu_{i j} \neq 0$. Therefore, in the context above, $\mu_{0} \neq 0$ when $\mu_{0}+\sum_{i j} \mu_{i j}=0$.

Since $\mu_{0} C_{0} \geqslant 0$, it follows that

$$
\mu_{0}=-w_{0}\left\langle T^{*} T f, \cdot\right\rangle_{X}
$$

for some $w_{0} \geqslant 0$, and since $\mu_{i j} C_{i j} \geqslant 0$,

$$
\mu_{i j}=-w_{i j}\left(\lambda_{i}^{*}\left(\nabla g_{i j}\left(\lambda_{i} f\right)\right), \cdot\right\rangle_{X}
$$

for some $w_{i j} \geqslant 0$ when $g_{i j}\left(\lambda_{i} f\right)=0$. On the other hand, $C_{i j}=\tilde{X}$ when $g_{i j}\left(\lambda_{i} f\right)<0$, in which case $\mu_{i j}=0$ and $w_{i j}=0$.

Therefore, f is a local minimizer of E from Ω iff

$$
-w_{0}\left\langle T^{*} T f, \cdot\right\rangle_{X}+\sum_{i \in I_{2}} \sum_{j=1}^{m}-w_{i j}\left\langle\lambda_{i}^{*}\left(\nabla g_{i j}\left(\lambda_{i} f\right)\right), \cdot\right\rangle_{X}=0
$$

on X for some $w_{0} \geqslant 0$ and $w_{i j} \geqslant 0$, with $w_{i j}=0$ when $g_{i j}\left(\lambda_{i} f\right)<0$. Moreover, since $\mu_{0} \neq 0$, it follows that $w_{0}>0$. Without loss of generality, we may assume that $w_{0}=1$, and so

$$
\left\langle T^{*} T f+\sum_{i \in I_{2}} \sum_{j=1}^{m} w_{i j} \lambda_{i}^{*}\left(\nabla g_{i j}\left(\lambda_{i} f\right)\right), \cdot\right\rangle_{X}=0
$$

implying, moreover, that the representer of this functional vanishes. That is,

$$
T^{*} T f+\sum_{i \in I_{2}} \sum_{j=1}^{m} w_{i j} \lambda_{i}^{*}\left(\nabla g_{i j}\left(\lambda_{i} f\right)\right)=0
$$

Equivalently,

$$
T^{*} T f+\tilde{\Lambda}^{*} w \Gamma(\Lambda f)=0
$$

Finally, local minimizers are global minimizers, since, by the convexity of $\Omega, f+s(\hat{f}-f)$ is in Ω for all $s \in[0,1]$ when \hat{f} is in Ω, and, by the convexity of E,

$$
E(f) \leqslant E(f+s(\hat{f}-f)) \leqslant E(f)+s(E(\hat{f})-E(f))
$$

for all s small enough (say $s \in[0, \varepsilon]$ for some small $\varepsilon>0$) when f is a local minimizer, thereby implying that $E(f) \leqslant E(\hat{f})$ for all $\hat{f} \in \Omega$.

5. Existence and uniqueness

Definition 3. We say that E is coercive on X if $E(f) \rightarrow \infty$ as $\|f\|_{X} \rightarrow \infty$.
Definition 4. We say that (f_{l}) is a minimizing sequence for (3) if $f_{l} \in \Omega$ for each l and

$$
\lim E\left(f_{l}\right)=\inf \{E(f): f \in \Omega\}
$$

Theorem 5. Assume, as above, that K is closed, nonempty and convex, and that $\Omega \neq \emptyset$. Then, solutions to (3) exist when either $\Omega \cap \operatorname{ker} T \neq \emptyset$, or when $\Omega \cap \operatorname{ker} T=\emptyset$ and E is coercive on X.

Proof. Existence is trivial to establish in the case that $\Omega \cap \operatorname{ker} T \neq \emptyset$ since $E(f)=0$ for any $f \in \Omega \cap$ ker T. And so, we will henceforth assume that $\Omega \cap \operatorname{ker} T=\emptyset$. Let (f_{l}) be a minimizing sequence for E in Ω. By the coercivity assumption, $\left(f_{l}\right)$ is bounded with respect to $\|\cdot\|_{X}$. Since X is a finite dimensional space, all norms on it are equivalent. In particular, recalling that $p_{i}:=\lambda_{i} f$ are the spline coefficients for f, the Euclidean norm of $p=\Lambda f$ in $\mathbb{R}^{n \times d}$ is a norm for f in X. Therefore, since $\left(f_{l}\right)$ is bounded in X, it follows that $\left(\Lambda f_{l}\right)$ is bounded in $\mathbb{R}^{n \times d}$, and so ($\left.\Lambda f_{l}\right)$ has convergent subsequences. On passing to a subsequence, we may assume that $\Lambda f_{l} \rightarrow p \in \mathbb{R}^{n \times d}$. Since K is closed and $\pi_{2} \Lambda f_{l} \in K$ for each l, it follows that $\pi_{2} p \in K$; since $\pi_{1} \Lambda f_{l}=q$ for all $l, \pi_{1} p=q$. This p is the coefficient sequence for some $f \in \Omega$. Since f_{l} is a minimizing sequence for $E(\cdot)$, it follows that $E(f) \leqslant E\left(f_{l}\right)$ for all l. Hence, f solves (3).

This existence result will be applied to the setup given in the next section. In particular, coercivity is established for a specific objective functional $E(\cdot)$ of practical interest. Our next goal is to establish uniqueness under certain conditions. For this we need the following result:

Lemma 6. Suppose that f_{1} and f_{2} both solve (3). Then, $f_{1}-f_{2} \in \operatorname{ker} T$.
Proof. Since f_{1} and f_{2} both minimize $E(\cdot)=\|T \cdot\|_{Y}^{2}$ over Ω, it follows that $T f_{1}$ and $T f_{2}$ are minimal norm elements in $T \Omega \subset Y$. Moreover, as the image of a convex set under a linear map, $T \Omega$ is convex in Y, and so there can be only one minimal norm element in $T \Omega$. Therefore $T f_{1}=T f_{2}$, and so $f_{1}-f_{2} \in \operatorname{ker} T$.

The following condition is used to establish uniqueness. The terminology is borrowed from [9], but in a different context.

Definition 7. We say that the setup is well-posed if $\operatorname{ker}(\beta \Lambda) \cap \operatorname{ker} T=\{0\}$ whenever $\beta \in Y$ is chosen such that $0 \neq \sum_{i \in I_{2}} \beta_{i}^{k} \lambda_{i}^{k} \in(\operatorname{ker} T)^{\perp}$ for $k=1: d$.

Uniqueness is established in the next theorem. For this, we require ker $T^{k} \cap \Omega=\emptyset$ with

$$
\left.T^{k}: X \longrightarrow \mathbb{R}^{n}: f \longmapsto(T f)^{k}, \quad \text { (the } k \text {-th coordinate of } T f\right)
$$

$k=1: d$. Note that this condition is more restrictive than ker $T \cap \Omega=\emptyset$. In the following proof, we make the association $\operatorname{ran} T^{*}=(\operatorname{ker} T)^{\perp}$. This follows because the subspace $\operatorname{ran} T$ is closed in Y (see [10, Theorem 4.13.6]).

Theorem 8. Suppose that ker $T^{k} \cap \Omega=\emptyset$ for $k=1: d$, that the sets K_{i} are strictly convex, and that the setup is well-posed. Then, there is at most one solution to (3).

Proof. Suppose that f_{1} and f_{2} both solve (3), each necessarily achieving the minimum value $e:=\inf \left\{E(f)=\|T f\|_{Y}^{2}: f \in \Omega\right\}$ of E over Ω. Let $f:=\left(f_{1}+f_{2}\right) / 2$. Due to the convexity of $\Omega, f \in \Omega$. Moreover, f is also a solution to (3) with value e, as follows from the inequality

$$
\sqrt{e} \leqslant \sqrt{E(f)}=\left\|T \frac{\left(f_{1}+f_{2}\right)}{2}\right\| \leqslant \frac{1}{2}\left(\left\|T f_{1}\right\|_{Y}+\left\|T f_{2}\right\|_{Y}\right)=\sqrt{e} .
$$

Since f is a solution to (3), it follows by (5) that

$$
T^{*} T f=-\tilde{\Lambda}^{*} w \Gamma(\Lambda f)
$$

for some nonnegative multipliers $w_{i j}$. Let

$$
\mu:=-\tilde{\Lambda}^{*} w \Gamma(\Lambda f)=\sum_{i \in I_{2}} \beta_{i} \lambda_{i}
$$

with

$$
\beta_{i}:=-\sum_{j=1}^{m} w_{i j} \nabla g_{i j}\left(\lambda_{i} f\right)
$$

and let $\mu^{k}: v \mapsto(\mu v)^{k}$, the k-th coordinate-map of μ, for $k=1: d$. Since $T^{*} T f=\mu$, it follows that μ is in $\operatorname{ran} T^{*}=(\operatorname{ker} T)^{\perp}$, and so $\mu^{k} \in(\operatorname{ker} T)^{\perp}$ as well. Moreover, $\mu^{k} \neq 0$, for otherwise $T^{k} f=0$, violating the assumption ker $T^{k} \cap \Omega=\emptyset$. (To see this, note that $\mu^{k}=0$ implies

$$
\left.0=\left\langle\mu^{k}, f\right\rangle_{X}=\left\langle\left(T^{*} T f\right)^{k}, f\right\rangle_{X}=\left\langle\left(T^{k}\right)^{*} T^{k} f, f\right\rangle_{X}=\left\langle T^{k} f, T^{k} f\right\rangle_{X .} .\right)
$$

Since

$$
0 \neq \mu^{k}=\sum_{i \in I_{2}} \beta_{i}^{k} \lambda_{i}^{k} \in(\operatorname{ker} T)^{\perp}, \quad k=1: d
$$

and the system is well-posed, it follows that $\operatorname{ker}(\beta \Lambda) \cap \operatorname{ker} T=\{0\}$. By Lemma $6, f_{1}-f_{2} \in$ ker T, and so, to prove uniqueness, it remains to show that $f_{1}-f_{2} \in \operatorname{ker}(\beta \Lambda)$.

Given a solution σ to (3), let A_{σ} denote the set of indices $i j$, restricted to $i \in I_{2}$, such that the $i j$-th constraint is active, meaning that $g_{i j}\left(\lambda_{i} \sigma\right)=0$ and $w_{i j}>0$ (i.e., when $\left.w_{i j} \neq 0\right)$. Now, let $f:=\left(f_{1}+f_{2}\right) / 2$, as above, with multipliers $w_{i j}$. By convexity of the sets K_{i}, the $i j$-th constraint is active for f iff it is active for both f_{1} and f_{2}, and so $A_{f} \subset A_{f_{1}} \cap A_{f_{2}}$. Moreover, by strict convexity of the sets $K_{i}, \lambda_{i} f=\lambda_{i} f_{1}=\lambda_{i} f_{2}$ when
$i j \in A_{f}$. Equivalently, $\lambda_{i}\left(f_{1}-f_{2}\right)=0$ when $w_{i j} \neq 0$. Therefore, $w_{i j} \lambda_{i}\left(f_{1}-f_{2}\right)=0$ for all $i j$. By the definition of β_{i} given above, it follows that

$$
\beta_{i} \lambda_{i}\left(f_{1}-f_{2}\right)=-\sum_{j=1}^{m} \nabla g_{i j}\left(\lambda_{i} f\right) w_{i j} \lambda_{i}\left(f_{1}-f_{2}\right)=0
$$

for all i, and so $f_{1}-f_{2} \in \operatorname{ker}(\beta \Lambda)$.
To conclude, we have shown that $f_{1}-f_{2} \in \operatorname{ker}(\beta \Lambda) \cap \operatorname{ker} T=\{0\}$, and so $f_{1}=f_{2}$. Therefore, there can be at most one solution.

To see what can go wrong when we do not have the well-posed assumption, consider the following example:

Example 9. Let X be the set of closed-periodic piecewise linear spline curves with knots $t_{1}=1, t_{2}=2$ and $t_{3}=3$ and coefficients p_{1}, p_{2} and p_{3}. Let K_{i} be the closed balls $K_{1}=B_{\varepsilon}(1,0), K_{2}=B_{\varepsilon}(0,1)$ and $K_{3}=B_{\varepsilon}(-1,0)$ for some "small" radius ε. Define T_{i} by their action: $T_{1} f=f\left(t_{1}\right)+f\left(t_{3}\right)=p_{1}+p_{3}, T_{2} \equiv 0$ and $T_{3} \equiv 0$.

Proposition 10. The setup in Example 9 is not well-posed. Moreover, solutions to (3) exist, but are not unique.

Proof. Solutions exist since $E(f)=0$ for $p_{1}=(1,0)$ and $p_{3}=(-1,0)$, however, they are not unique since p_{2} can be any point in K_{2}. To see that the setup is not well-posed, let $\beta_{1}=(1,1), \beta_{2}=(0,0)$ and $\beta_{3}=(1,1)$ in Definition 7. Then, since $f \in \operatorname{ker} T$ iff $p_{1}=-p_{3}$, it follows that

$$
\mu f=\beta_{1} p_{1}+\beta_{2} p_{2}+\beta_{3} p_{3}=p_{1}+p_{3}=0
$$

and so $\mu \in(\operatorname{ker} T)^{\perp}$. Moreover, $\mu^{k} \neq 0$ for $k=1,2$ since $\beta_{1}^{k} \neq 0$. We have established that $0 \neq \mu^{k} \in(\operatorname{ker} T)^{\perp}$, while $\operatorname{ker}(\beta \Lambda) \cap \operatorname{ker} T \neq\{0\}$ because p_{2} is arbitrary. Therefore, the setup is not well-posed.

In the next section, Theorem 8 is applied to setup where $E(\cdot)$ the discretized thin beam functional, which is well-posed. Hence, we can verify uniqueness when the sets K_{i} are strictly convex. We also show that, although strict convexity is needed in certain cases, it is not a necessary condition in Theorem 8.

6. The discretized thin beam

In [19], the following discretization of the linearized thin beam energy functional $\frac{1}{2} \int_{t_{1}}^{t_{n+1}}\left|D^{2} f(t)\right|^{2} \mathrm{~d} t$ was studied:

$$
\begin{equation*}
E(f):=\frac{1}{2} \sum_{i=1}^{n} \int_{\frac{t_{i}+t_{i-1}}{2}}^{\frac{t_{i}+t_{i+1}}{2}}\left|2 \Delta_{i-1,2} f\right|^{2} \mathrm{~d} t=\sum_{i=1}^{n}\left|\Delta_{i-1,2} f\right|^{2} h_{i-1,2} . \tag{7}
\end{equation*}
$$

Here, $\Delta_{i-1,2}:=\left[t_{i-1}, t_{i}, t_{i+1}\right]$ is the second divided difference operator. In the context of this paper $T_{i}:=\sqrt{h_{i-1,2}} \Delta_{i-1,2}$. In this section, we establish conditions for the existence and uniqueness of solutions to (3) with $E(\cdot)$ as in (7). We also comment on the representation of linear functionals in our reproducing Hilbert space.

We may first observe that if $E(f)=0$ for this functional, then all second divided differences vanish. Therefore, ker T is contained in the space of linear curves. But the only linear curves that are also closed are "constant curves". That is, ker T consists of curves f with coefficients $p=\Lambda f$ on the diagonal (x, x, \ldots, x) in $Y=\mathbb{R}^{n \times d}$. In particular, $\operatorname{dim}(\operatorname{ker} T)=d$.

Theorem 11. Let $E(\cdot)$ be as in (7). Solutions to (3) exist for the energy functional (7) when either $\Omega \cap \operatorname{ker} T \neq \emptyset$, or when $\Omega \cap \operatorname{ker} T=\emptyset$ and at least one of the sets K_{i} is bounded. Solutions are unique when the sets K_{i} are strictly convex and $\Omega \cap \operatorname{ker} T^{k}=\emptyset$ for $k=1: d$.

Proof. Existence follows directly from Theorem 5 when $\Omega \cap$ ker $T \neq \emptyset$, and can be established when $\Omega \cap$ ker $T=\emptyset$ if we can satisfy the coercivity condition in Definition 3. To this end, recall the inner product

$$
\langle f, g\rangle_{X}=\langle S f, S g\rangle_{\mathrm{Ker} \mathrm{~T}}+\langle T f, T g\rangle_{Y}
$$

given in (2), with $\langle\cdot, \cdot\rangle_{\text {Ker T }}$ some inner product on ker T. As stated above, ker T is comprised of the constant functions when $E(\cdot)$ is given by (7). In particular, we can choose

$$
\langle S f, S g\rangle_{\mathrm{Ker} \mathrm{~T}}:=\lambda_{i} f \cdot \lambda_{i} g
$$

for any i. Here, we choose i to correspond to a bounded set K_{i}, as hypothesized in the theorem. By (2) and (1),

$$
\begin{aligned}
\|f\|_{X}^{2} & =\langle S f, S f\rangle_{\mathrm{KerT}}+\langle T f, T f\rangle_{Y} \\
& =p_{i} \cdot p_{i}+p^{T} H p
\end{aligned}
$$

is a norm (-squared) on X, with $p=\Lambda f$. Now, since K_{i} is bounded (for this particular i), then p_{i} is bounded, and so $E(f)=p^{T} H p$ and $\|f\|_{X}$ go to infinity together. In particular, $E(f) \rightarrow \infty$ when $\|f\|_{X} \rightarrow \infty$. This establishes coercivity, and existence when $\Omega \cap$ ker $T=\emptyset$.

It remains to establish uniqueness. By Theorem 8, we need to show that the setup is wellposed. To do so, suppose that $\mu^{k} f=0$ for $k=1: d$ with $\mu=\sum_{i} \beta_{i} \lambda_{i}$ for some coefficients β_{i} in \mathbb{R}^{d}. Since we are also assuming that $\mu^{k} \neq 0$, it follows that β_{i}^{k} is nonzero for some i, for each k (actually, there are at least two nonzero β_{i}^{k} for each k in the setup here). Then, if $f \in \operatorname{ker} \beta \Lambda$, it follows that $p_{i}^{k}=0$ for at least one i, and each k. But if f is in ker T, then it is a constant curve, and so $p_{1}^{k}=p_{2}^{k}=\cdots=0$. Therefore, $p=0$ in Y, and so $f \equiv 0$. This establishes the well-posedness condition in Definition 7. By Theorem 8, solutions are unique.

To see that boundedness (or perhaps some other condition) is needed to establish existence in Theorem 11, consider the following example:

Example 12. Let $K:=K_{1} \times K_{2} \times K_{3}$ with

$$
\begin{aligned}
& K_{1}:=\left\{(x, y) \in \mathbb{R}^{2}: x y \geqslant 1, x, y>0\right\}, \\
& K_{2}:=\mathbb{R}^{2}, \\
& K_{3}:=\left\{(x, y) \in \mathbb{R}^{2}: x y \geqslant 1, x, y<0\right\} .
\end{aligned}
$$

Let X be the set of closed-periodic piecewise linear spline curves with knots $t_{1}=1, t_{2}=2$ and $t_{3}=3$, and coefficients p_{1}, p_{2} and p_{3} in \mathbb{R}^{2}.

Proposition 13. For the setup in Example 12, solutions to (3) do not exist.

Proof. In Example 12, each set K_{i} is closed and convex in \mathbb{R}^{2}. Moreover, $\Omega \cap$ ker $T=\emptyset$ since ker T contains only constant curves and $\cap K_{i}=\emptyset$. Therefore, $E(f)>0$ for any $f \in \Omega$. However, inf $E(\cdot)=0$ over Ω. To see this, let $\left(f^{k}\right)$ be a sequence of spline curves with coefficients $p_{1}^{k}=\left(\frac{1}{k}, k\right), p_{2}^{k}=\left(0, k+\frac{\sqrt{3}}{k}\right)$ and $p_{3}^{k}=\left(-\frac{1}{k}, k\right)$. Each of the curves f^{k} is an equilateral triangle in Ω. As $k \rightarrow \infty$ these triangles shrink to a point and are pushed up to ∞ in the y coordinate. Moreover, $E\left(f^{k}\right)=\frac{18}{k^{2}}$, and so $E\left(f^{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. In particular, $\left(f^{k}\right)$ is a minimizing sequence. But since $E(\cdot)=0$ is not achieved in Ω, solutions do not exist.

One important special case is when the sets K_{i} are Euclidean balls in \mathbb{R}^{d}. In this case the sets K_{i} are strictly convex, and so we have uniqueness by Theorem 8 . To see what can go wrong when the sets K_{i} are not strictly convex, consider the following example:

Example 14. Let $K:=K_{1} \times K_{2} \times K_{3}$ with

$$
\begin{aligned}
& K_{1}:=\left\{(x, y) \in \mathbb{R}^{2}: x \geqslant \varepsilon, y \geqslant 1\right\}, \\
& K_{2}:=\left\{(x, y) \in \mathbb{R}^{2}: x \leqslant-\varepsilon, y \geqslant 1\right\}, \\
& K_{3}:=\left\{(x, y) \in \mathbb{R}^{2}: y \leqslant 0\right\} .
\end{aligned}
$$

Here, ε is some small positive number (as small as we need it to be). Let the knots be uniform.

Proposition 15. For the setup in Example 14, solutions to (3) are not unique.

Proof. Suppose that f solve (3) for this configuration, with coefficients p_{1}, p_{2} and p_{3}. Then, either $p_{1} \neq(\varepsilon, \cdot)$ or $p_{2} \neq(-\varepsilon, \cdot)$, for otherwise $E(f)$ would be large due to a very small angle at p_{3}. But this means that f can be shifted either to the left or right without violating the constraints $f\left(t_{i}\right) \in K_{i}$, and without increasing the energy. That is, the curve \tilde{f} with coefficients $\tilde{p}:=p+(\delta, 0)$ is also a solution for some δ, and so, solutions are not unique.

Unfortunately, we are often interested in configurations where the K_{i} are not strictly convex, and it seems tricky to have a blanket uniqueness condition in this case. However,

Fig. 1. Discretized thin beam (left); interval tension (right).
once we have computed a solution for a given configuration, we can often verify uniqueness by inspection. For example, consider the left image in Fig. 1. Here, we have computed a minimizer f for (3) for the minimizing functional $E(\cdot)$ given in (7). (The curve in the image was actually generated after a couple levels of refinement.) We know by Theorem 2 that this is necessarily a global minimizer. Moreover, we know by Lemma 6 that if there is another solution, \tilde{f}, then $f-\tilde{f} \in$ ker T. That is, f differs from \tilde{f} by a constant function. However, by inspection of the curve in the figure, f cannot be shifted by a constant (a linear translation) without violating the constraints. Therefore, the curve computed must be the unique global minimizer to (3) (to within computational tolerances).

We conclude this section with another feature of reproducing kernel Hilbert spaces. Namely, that the representers $\lambda_{i}^{*}=\phi_{i}(t)$ of linear functionals λ_{i} on X are themselves elements of X. For the setup here, the representers of the (vector-) functionals λ_{i} are necessarily piecewise linear, periodic splines with knots t_{i}. They act by the inner product as follows:

$$
\lambda_{i} f=\left\langle f, \phi_{i}\right\rangle_{X}=f\left(t_{1}\right) \cdot \phi_{i}\left(t_{1}\right)+(\Lambda f)^{T} H \Lambda \phi_{i}
$$

Moreover, as shown in [19],

$$
E(f)=\sum_{i=1}^{n} p_{i} \cdot \operatorname{jmp}_{t_{i}}\left(D^{3} f\right)=(\Lambda f)^{T} \operatorname{jmp}_{t}\left(D^{3} f\right)
$$

with $\operatorname{jmp}_{t}\left(D^{3} f\right):=\left(\operatorname{jmp}_{t_{i}}\left(D^{3} f\right): i=1: n\right)$ for the "jump maps"

$$
\operatorname{jmp}_{t_{i}}\left(D^{3} f\right):=\frac{h_{i-1,3}}{h_{i}} \Delta_{i-1,3} f-\frac{h_{i-2,3}}{h_{i-1}} \Delta_{i-2,3} f
$$

Therefore, the representers take on the action

$$
\lambda_{i} f=\left\langle f, \phi_{i}\right\rangle_{X}=f\left(t_{1}\right) \cdot \phi_{i}\left(t_{1}\right)+(\Lambda f)^{T} \operatorname{jmp}_{t}\left(D^{3} \phi_{i}\right)
$$

Now, $f=\sum_{j} p_{j} N_{j}(t)$ in our piecewise linear spline basis, and in this basis $\lambda_{i} N_{j}=$ $\left\langle N_{j}, \phi_{i}\right\rangle_{X}=\delta_{i j}$, with $\delta_{i j}$ the Kroenecker-delta function. Therefore, we can determine the representers $\phi_{i}(t)$ by solving linear systems whose rows are determined from

$$
N_{j}\left(t_{1}\right) \cdot \phi_{i}\left(t_{1}\right)+\mathrm{jmp}_{t_{j}}\left(D^{3} \phi_{i}\right)=\delta_{i j}
$$

for $j=1: n$, to determine the coefficients α_{k} in the expansion $\phi_{i}(t):=\sum_{k=1}^{n} \alpha_{k} N_{k}(t)$. The linear system is almost banded, with bandwidth 5 on the banded part, just as in periodic cubic spline interpolation.

These representers can be used in computation. Assuming that we are given the multipliers $w_{i j}$, we have, by (5), the following:

$$
\begin{aligned}
T^{*} T f & =-\tilde{\Lambda}^{*} w \Gamma(\Lambda f) \\
& =-\sum_{i \in I_{2}} \sum_{j=1}^{m} w_{i j} \lambda_{i}^{*}\left(\nabla g_{i j}\left(\lambda_{i} f\right)\right) \\
& =-\sum_{i \in I_{2}}\left(\sum_{j=1}^{m} w_{i j} \nabla g_{i j}\left(\lambda_{i} f\right)\right) \phi_{i}(\cdot)
\end{aligned}
$$

From this, we can recover f.

7. Interval tension

It is relatively straight forward to experiment with different refinement functionals. For example, to achieve interval tension, we can modify the discretized thin beam functional as follows:

$$
\begin{equation*}
E(f):=\frac{1}{2} \sum_{i=1}^{n} \int_{\frac{t_{i}+t_{i-1}}{2}}^{\frac{t_{i}+t_{i+1}}{2}} \beta_{i}\left|2 \Delta_{i-1,2} f\right|^{2} \mathrm{~d} t=\sum_{i=1}^{n} \beta_{i}\left|\Delta_{i-1,2} f\right|^{2} h_{i-1,2} \tag{8}
\end{equation*}
$$

Here, β_{i} are interval tension parameters, assumed to be positive. The curves in Fig. 1 were computed after a couple levels of refinement, using the energy functional (7) for the left image, and (8) for the right. The effect of interval tension is quite apparent in the right image.

8. Conclusion

In this paper, we present an abstract approach to variational refinement for curves that meet arbitrary convex constraints. We investigate the characterization, existence and uniqueness of solutions in a general, abstract framework. But the analysis is based only on one level of refinement. In particular, the smoothness of the limiting curves is not considered. This is an interesting and open problem, complicated by the non-uniformity of the knots. That is, the smoothness depends on the parametrization of the curves. The author is currently investigating this problem when $E(\cdot)$ is the energy functional in Section 6. Another useful generalization may be to allow "functionals" λ_{i} other than point evaluation, as is typically the case in generalized spline theory.

Acknowledgments

I would like to thank the reviewers for their thoughtful comments on the submitted manuscript.

References

[1] P.M. Anselone, P.J. Laurent, A general method for the construction of interpolating or smoothing splinefunctions, Numer. Math. 12 (1968) 66-82.
[2] M. Atteia, Fonctions spline avec contraintes linéaires de type inégalite, Congrès de l'AFIRO, Nancy, Mai, 1967.
[3] M. Atteia, Fonctions spline définiés sur un ensemble convexe, Numer. Math. 12 (1968) 192-210.
[4] M. Atteia, Hilbertian kernels and Spline Functions, Elsevier Science Publishers, Amsterdam, 1992.
[5] A.Yu. Bezhaev, V.A. Vasilenko, Variational Spline Theory, Kluwer Academic/Plenum Publishers, New York, 2001.
[6] P. Copley, L.L. Schumaker, On $p L g$-splines, J. Approx. Theory 23 (1978) 1-28.
[7] A.Ya. Dubovitskii, A.A. Milyutin, Extremum problems with constraints, Soviet Math. 4 (1963) 452-455.
[8] A.Ya. Dubovitskii, A.A. Milyutin, Extremum problems in the presence of restrictions, U.S.S.R. Comput. Math. Math. Phys. 5 (3) (1965) 1-80.
[9] D. Ferguson, The question of uniqueness for G.D. Birkhoff interpolation problems, J. Approx. Theory 2 (1969) 1-28.
[10] A. Friedman, Foundations of Modern Analysis, Dover, New York, 1982.
[11] I.V. Girsanov, Lectures on the Mathematical Theory of Extremal Problems, Springer, New York, 1972.
[12] H. Halkin, A satisfactory treatment of equality and operator constraints in the Dubovitskii-Milyutin optimization formalism, J. Optim. Theory Appl. 6 (2) (1970) 138-149.
[13] J.C. Holladay, A smoothest curve approximation, Math. Tables Aids Comput. 11 (1957) 233-243.
[14] R.B. Holmes, A Course on Optimization and Best Approximation, Springer, 1970.
[15] J. Jerome, L.L. Schumaker, A note on obtaining natural spline functions by the abstract approach of Atteia and Laurent, SIAM J. Numer. Anal. 5 (1968) 657-663.
[16] S. Kersey, Best near-interpolation by curves: existence, SIAM J. Numer. Anal. 38 (2000) 1666-1675.
[17] S. Kersey, Near interpolation, Numer. Math. 94 (3) (2003) 523-540.
[18] S. Kersey, Near-interpolation to arbitrary constraints, in: L. Schumaker, T. Lyche, M. Mazure (Eds.), Curve and Surfaces Design: Saint Malo 2002, Nashville Press, 2003, pp. 235-244.
[19] S. Kersey, Near-interpolatory subdivided curves, manuscript can be downloaded from the author's home page, 2003.
[20] S. Kersey, The effect of parametrization on subdivided curves, manuscript can be downloaded from the author's home page, 2003.
[21] L. Kobbelt, A variational approach to subdivision, Comput. Aided Geom. Design 13 (1996).
[22] P.J. Laurent, Construction of spline functions in a convex set, in: I. Schoenberg (Ed.), Approximation with Special Emphasis on Spline Functions, Madison WI, 1969, pp. 415-446.
[23] O.L. Mangasarian, L.L. Schumaker, Splines via optimal control, in: I. Schoenberg (Ed.), Approximation with Special Emphasis on Spline Functions, Madison WI, 1969, pp. 119-155.
[24] J. Wallner, H. Pottman, Variational interpolation, Technical Report No. 84, Institut für Geometrie, Technische Universität Wien, 2001. http://www.geometrie.tuwien.ac.at/wallner/publ.html.
[25] J. Wallner, H. Pottman, Variational interpolation of subsets, Constr. Approx. 20 (2004) 233-248.
[26] E. Zeidler, Nonlinear Functional Analysis and its Applications III, Springer, New York, 1985.

[^0]: E-mail address: skersey @ georgiasouthern.edu (S. N. Kersey).
 0021-9045/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jat.2004.07.006

